active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(natsFrom(X)) → natsFrom(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(fst(X)) → fst(active(X))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(u(X1, X2, X3, X4)) → u(active(X1), X2, X3, X4)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
natsFrom(mark(X)) → mark(natsFrom(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
fst(mark(X)) → mark(fst(X))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
u(mark(X1), X2, X3, X4) → mark(u(X1, X2, X3, X4))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(fst(X)) → fst(proper(X))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(u(X1, X2, X3, X4)) → u(proper(X1), proper(X2), proper(X3), proper(X4))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
natsFrom(ok(X)) → ok(natsFrom(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
fst(ok(X)) → ok(fst(X))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
u(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(u(X1, X2, X3, X4))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(natsFrom(X)) → natsFrom(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(fst(X)) → fst(active(X))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(u(X1, X2, X3, X4)) → u(active(X1), X2, X3, X4)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
natsFrom(mark(X)) → mark(natsFrom(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
fst(mark(X)) → mark(fst(X))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
u(mark(X1), X2, X3, X4) → mark(u(X1, X2, X3, X4))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(fst(X)) → fst(proper(X))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(u(X1, X2, X3, X4)) → u(proper(X1), proper(X2), proper(X3), proper(X4))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
natsFrom(ok(X)) → ok(natsFrom(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
fst(ok(X)) → ok(fst(X))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
u(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(u(X1, X2, X3, X4))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
PROPER(u(X1, X2, X3, X4)) → PROPER(X2)
ACTIVE(natsFrom(N)) → NATSFROM(s(N))
PROPER(fst(X)) → FST(proper(X))
ACTIVE(fst(X)) → FST(active(X))
ACTIVE(take(X1, X2)) → TAKE(X1, active(X2))
ACTIVE(afterNth(N, XS)) → SND(splitAt(N, XS))
ACTIVE(cons(X1, X2)) → CONS(active(X1), X2)
AFTERNTH(X1, mark(X2)) → AFTERNTH(X1, X2)
ACTIVE(splitAt(0, XS)) → PAIR(nil, XS)
SEL(ok(X1), ok(X2)) → SEL(X1, X2)
ACTIVE(splitAt(X1, X2)) → ACTIVE(X1)
PROPER(u(X1, X2, X3, X4)) → PROPER(X3)
ACTIVE(afterNth(N, XS)) → SPLITAT(N, XS)
FST(mark(X)) → FST(X)
ACTIVE(take(X1, X2)) → ACTIVE(X1)
SND(ok(X)) → SND(X)
ACTIVE(snd(X)) → ACTIVE(X)
ACTIVE(take(X1, X2)) → TAKE(active(X1), X2)
PROPER(sel(X1, X2)) → PROPER(X2)
SND(mark(X)) → SND(X)
PROPER(splitAt(X1, X2)) → SPLITAT(proper(X1), proper(X2))
ACTIVE(s(X)) → ACTIVE(X)
PROPER(natsFrom(X)) → NATSFROM(proper(X))
ACTIVE(tail(X)) → ACTIVE(X)
PROPER(fst(X)) → PROPER(X)
S(ok(X)) → S(X)
ACTIVE(take(N, XS)) → FST(splitAt(N, XS))
CONS(mark(X1), X2) → CONS(X1, X2)
ACTIVE(u(pair(YS, ZS), N, X, XS)) → CONS(X, YS)
ACTIVE(splitAt(s(N), cons(X, XS))) → U(splitAt(N, XS), N, X, XS)
TOP(mark(X)) → PROPER(X)
PAIR(mark(X1), X2) → PAIR(X1, X2)
ACTIVE(sel(X1, X2)) → ACTIVE(X2)
PROPER(u(X1, X2, X3, X4)) → U(proper(X1), proper(X2), proper(X3), proper(X4))
TOP(ok(X)) → ACTIVE(X)
SPLITAT(mark(X1), X2) → SPLITAT(X1, X2)
ACTIVE(sel(N, XS)) → HEAD(afterNth(N, XS))
U(mark(X1), X2, X3, X4) → U(X1, X2, X3, X4)
FST(ok(X)) → FST(X)
PROPER(cons(X1, X2)) → PROPER(X1)
AFTERNTH(ok(X1), ok(X2)) → AFTERNTH(X1, X2)
PROPER(tail(X)) → PROPER(X)
ACTIVE(fst(X)) → ACTIVE(X)
ACTIVE(afterNth(X1, X2)) → AFTERNTH(X1, active(X2))
PROPER(afterNth(X1, X2)) → PROPER(X1)
U(ok(X1), ok(X2), ok(X3), ok(X4)) → U(X1, X2, X3, X4)
S(mark(X)) → S(X)
ACTIVE(natsFrom(X)) → ACTIVE(X)
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
ACTIVE(snd(X)) → SND(active(X))
PROPER(pair(X1, X2)) → PROPER(X1)
PROPER(head(X)) → HEAD(proper(X))
ACTIVE(afterNth(X1, X2)) → ACTIVE(X1)
ACTIVE(splitAt(s(N), cons(X, XS))) → SPLITAT(N, XS)
PROPER(natsFrom(X)) → PROPER(X)
PROPER(u(X1, X2, X3, X4)) → PROPER(X1)
ACTIVE(u(X1, X2, X3, X4)) → U(active(X1), X2, X3, X4)
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(u(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(splitAt(X1, X2)) → SPLITAT(X1, active(X2))
ACTIVE(afterNth(X1, X2)) → AFTERNTH(active(X1), X2)
ACTIVE(sel(X1, X2)) → SEL(active(X1), X2)
ACTIVE(pair(X1, X2)) → ACTIVE(X1)
ACTIVE(take(N, XS)) → SPLITAT(N, XS)
ACTIVE(sel(X1, X2)) → ACTIVE(X1)
ACTIVE(splitAt(X1, X2)) → SPLITAT(active(X1), X2)
ACTIVE(pair(X1, X2)) → PAIR(X1, active(X2))
PROPER(afterNth(X1, X2)) → AFTERNTH(proper(X1), proper(X2))
PROPER(head(X)) → PROPER(X)
HEAD(mark(X)) → HEAD(X)
PROPER(snd(X)) → SND(proper(X))
PAIR(ok(X1), ok(X2)) → PAIR(X1, X2)
PROPER(cons(X1, X2)) → PROPER(X2)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
PROPER(u(X1, X2, X3, X4)) → PROPER(X4)
ACTIVE(u(pair(YS, ZS), N, X, XS)) → PAIR(cons(X, YS), ZS)
PROPER(sel(X1, X2)) → SEL(proper(X1), proper(X2))
AFTERNTH(mark(X1), X2) → AFTERNTH(X1, X2)
PROPER(s(X)) → S(proper(X))
PROPER(pair(X1, X2)) → PROPER(X2)
PROPER(tail(X)) → TAIL(proper(X))
NATSFROM(mark(X)) → NATSFROM(X)
TAIL(mark(X)) → TAIL(X)
ACTIVE(afterNth(X1, X2)) → ACTIVE(X2)
ACTIVE(sel(N, XS)) → AFTERNTH(N, XS)
ACTIVE(head(X)) → HEAD(active(X))
SPLITAT(ok(X1), ok(X2)) → SPLITAT(X1, X2)
TAKE(mark(X1), X2) → TAKE(X1, X2)
PROPER(snd(X)) → PROPER(X)
PAIR(X1, mark(X2)) → PAIR(X1, X2)
ACTIVE(natsFrom(N)) → S(N)
ACTIVE(pair(X1, X2)) → ACTIVE(X2)
SPLITAT(X1, mark(X2)) → SPLITAT(X1, X2)
SEL(mark(X1), X2) → SEL(X1, X2)
PROPER(take(X1, X2)) → TAKE(proper(X1), proper(X2))
ACTIVE(take(X1, X2)) → ACTIVE(X2)
NATSFROM(ok(X)) → NATSFROM(X)
PROPER(s(X)) → PROPER(X)
SEL(X1, mark(X2)) → SEL(X1, X2)
TAIL(ok(X)) → TAIL(X)
PROPER(take(X1, X2)) → PROPER(X2)
ACTIVE(pair(X1, X2)) → PAIR(active(X1), X2)
ACTIVE(tail(X)) → TAIL(active(X))
PROPER(afterNth(X1, X2)) → PROPER(X2)
TOP(ok(X)) → TOP(active(X))
TAKE(ok(X1), ok(X2)) → TAKE(X1, X2)
ACTIVE(sel(X1, X2)) → SEL(X1, active(X2))
PROPER(pair(X1, X2)) → PAIR(proper(X1), proper(X2))
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
ACTIVE(splitAt(X1, X2)) → ACTIVE(X2)
PROPER(splitAt(X1, X2)) → PROPER(X2)
ACTIVE(natsFrom(X)) → NATSFROM(active(X))
TAKE(X1, mark(X2)) → TAKE(X1, X2)
PROPER(take(X1, X2)) → PROPER(X1)
PROPER(splitAt(X1, X2)) → PROPER(X1)
PROPER(sel(X1, X2)) → PROPER(X1)
ACTIVE(natsFrom(N)) → CONS(N, natsFrom(s(N)))
TOP(mark(X)) → TOP(proper(X))
HEAD(ok(X)) → HEAD(X)
ACTIVE(s(X)) → S(active(X))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(natsFrom(X)) → natsFrom(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(fst(X)) → fst(active(X))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(u(X1, X2, X3, X4)) → u(active(X1), X2, X3, X4)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
natsFrom(mark(X)) → mark(natsFrom(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
fst(mark(X)) → mark(fst(X))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
u(mark(X1), X2, X3, X4) → mark(u(X1, X2, X3, X4))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(fst(X)) → fst(proper(X))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(u(X1, X2, X3, X4)) → u(proper(X1), proper(X2), proper(X3), proper(X4))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
natsFrom(ok(X)) → ok(natsFrom(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
fst(ok(X)) → ok(fst(X))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
u(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(u(X1, X2, X3, X4))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
PROPER(u(X1, X2, X3, X4)) → PROPER(X2)
ACTIVE(natsFrom(N)) → NATSFROM(s(N))
PROPER(fst(X)) → FST(proper(X))
ACTIVE(fst(X)) → FST(active(X))
ACTIVE(take(X1, X2)) → TAKE(X1, active(X2))
ACTIVE(afterNth(N, XS)) → SND(splitAt(N, XS))
ACTIVE(cons(X1, X2)) → CONS(active(X1), X2)
AFTERNTH(X1, mark(X2)) → AFTERNTH(X1, X2)
ACTIVE(splitAt(0, XS)) → PAIR(nil, XS)
SEL(ok(X1), ok(X2)) → SEL(X1, X2)
ACTIVE(splitAt(X1, X2)) → ACTIVE(X1)
PROPER(u(X1, X2, X3, X4)) → PROPER(X3)
ACTIVE(afterNth(N, XS)) → SPLITAT(N, XS)
FST(mark(X)) → FST(X)
ACTIVE(take(X1, X2)) → ACTIVE(X1)
SND(ok(X)) → SND(X)
ACTIVE(snd(X)) → ACTIVE(X)
ACTIVE(take(X1, X2)) → TAKE(active(X1), X2)
PROPER(sel(X1, X2)) → PROPER(X2)
SND(mark(X)) → SND(X)
PROPER(splitAt(X1, X2)) → SPLITAT(proper(X1), proper(X2))
ACTIVE(s(X)) → ACTIVE(X)
PROPER(natsFrom(X)) → NATSFROM(proper(X))
ACTIVE(tail(X)) → ACTIVE(X)
PROPER(fst(X)) → PROPER(X)
S(ok(X)) → S(X)
ACTIVE(take(N, XS)) → FST(splitAt(N, XS))
CONS(mark(X1), X2) → CONS(X1, X2)
ACTIVE(u(pair(YS, ZS), N, X, XS)) → CONS(X, YS)
ACTIVE(splitAt(s(N), cons(X, XS))) → U(splitAt(N, XS), N, X, XS)
TOP(mark(X)) → PROPER(X)
PAIR(mark(X1), X2) → PAIR(X1, X2)
ACTIVE(sel(X1, X2)) → ACTIVE(X2)
PROPER(u(X1, X2, X3, X4)) → U(proper(X1), proper(X2), proper(X3), proper(X4))
TOP(ok(X)) → ACTIVE(X)
SPLITAT(mark(X1), X2) → SPLITAT(X1, X2)
ACTIVE(sel(N, XS)) → HEAD(afterNth(N, XS))
U(mark(X1), X2, X3, X4) → U(X1, X2, X3, X4)
FST(ok(X)) → FST(X)
PROPER(cons(X1, X2)) → PROPER(X1)
AFTERNTH(ok(X1), ok(X2)) → AFTERNTH(X1, X2)
PROPER(tail(X)) → PROPER(X)
ACTIVE(fst(X)) → ACTIVE(X)
ACTIVE(afterNth(X1, X2)) → AFTERNTH(X1, active(X2))
PROPER(afterNth(X1, X2)) → PROPER(X1)
U(ok(X1), ok(X2), ok(X3), ok(X4)) → U(X1, X2, X3, X4)
S(mark(X)) → S(X)
ACTIVE(natsFrom(X)) → ACTIVE(X)
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
ACTIVE(snd(X)) → SND(active(X))
PROPER(pair(X1, X2)) → PROPER(X1)
PROPER(head(X)) → HEAD(proper(X))
ACTIVE(afterNth(X1, X2)) → ACTIVE(X1)
ACTIVE(splitAt(s(N), cons(X, XS))) → SPLITAT(N, XS)
PROPER(natsFrom(X)) → PROPER(X)
PROPER(u(X1, X2, X3, X4)) → PROPER(X1)
ACTIVE(u(X1, X2, X3, X4)) → U(active(X1), X2, X3, X4)
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(u(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(splitAt(X1, X2)) → SPLITAT(X1, active(X2))
ACTIVE(afterNth(X1, X2)) → AFTERNTH(active(X1), X2)
ACTIVE(sel(X1, X2)) → SEL(active(X1), X2)
ACTIVE(pair(X1, X2)) → ACTIVE(X1)
ACTIVE(take(N, XS)) → SPLITAT(N, XS)
ACTIVE(sel(X1, X2)) → ACTIVE(X1)
ACTIVE(splitAt(X1, X2)) → SPLITAT(active(X1), X2)
ACTIVE(pair(X1, X2)) → PAIR(X1, active(X2))
PROPER(afterNth(X1, X2)) → AFTERNTH(proper(X1), proper(X2))
PROPER(head(X)) → PROPER(X)
HEAD(mark(X)) → HEAD(X)
PROPER(snd(X)) → SND(proper(X))
PAIR(ok(X1), ok(X2)) → PAIR(X1, X2)
PROPER(cons(X1, X2)) → PROPER(X2)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
PROPER(u(X1, X2, X3, X4)) → PROPER(X4)
ACTIVE(u(pair(YS, ZS), N, X, XS)) → PAIR(cons(X, YS), ZS)
PROPER(sel(X1, X2)) → SEL(proper(X1), proper(X2))
AFTERNTH(mark(X1), X2) → AFTERNTH(X1, X2)
PROPER(s(X)) → S(proper(X))
PROPER(pair(X1, X2)) → PROPER(X2)
PROPER(tail(X)) → TAIL(proper(X))
NATSFROM(mark(X)) → NATSFROM(X)
TAIL(mark(X)) → TAIL(X)
ACTIVE(afterNth(X1, X2)) → ACTIVE(X2)
ACTIVE(sel(N, XS)) → AFTERNTH(N, XS)
ACTIVE(head(X)) → HEAD(active(X))
SPLITAT(ok(X1), ok(X2)) → SPLITAT(X1, X2)
TAKE(mark(X1), X2) → TAKE(X1, X2)
PROPER(snd(X)) → PROPER(X)
PAIR(X1, mark(X2)) → PAIR(X1, X2)
ACTIVE(natsFrom(N)) → S(N)
ACTIVE(pair(X1, X2)) → ACTIVE(X2)
SPLITAT(X1, mark(X2)) → SPLITAT(X1, X2)
SEL(mark(X1), X2) → SEL(X1, X2)
PROPER(take(X1, X2)) → TAKE(proper(X1), proper(X2))
ACTIVE(take(X1, X2)) → ACTIVE(X2)
NATSFROM(ok(X)) → NATSFROM(X)
PROPER(s(X)) → PROPER(X)
SEL(X1, mark(X2)) → SEL(X1, X2)
TAIL(ok(X)) → TAIL(X)
PROPER(take(X1, X2)) → PROPER(X2)
ACTIVE(pair(X1, X2)) → PAIR(active(X1), X2)
ACTIVE(tail(X)) → TAIL(active(X))
PROPER(afterNth(X1, X2)) → PROPER(X2)
TOP(ok(X)) → TOP(active(X))
TAKE(ok(X1), ok(X2)) → TAKE(X1, X2)
ACTIVE(sel(X1, X2)) → SEL(X1, active(X2))
PROPER(pair(X1, X2)) → PAIR(proper(X1), proper(X2))
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
ACTIVE(splitAt(X1, X2)) → ACTIVE(X2)
PROPER(splitAt(X1, X2)) → PROPER(X2)
ACTIVE(natsFrom(X)) → NATSFROM(active(X))
TAKE(X1, mark(X2)) → TAKE(X1, X2)
PROPER(take(X1, X2)) → PROPER(X1)
PROPER(splitAt(X1, X2)) → PROPER(X1)
PROPER(sel(X1, X2)) → PROPER(X1)
ACTIVE(natsFrom(N)) → CONS(N, natsFrom(s(N)))
TOP(mark(X)) → TOP(proper(X))
HEAD(ok(X)) → HEAD(X)
ACTIVE(s(X)) → S(active(X))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(natsFrom(X)) → natsFrom(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(fst(X)) → fst(active(X))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(u(X1, X2, X3, X4)) → u(active(X1), X2, X3, X4)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
natsFrom(mark(X)) → mark(natsFrom(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
fst(mark(X)) → mark(fst(X))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
u(mark(X1), X2, X3, X4) → mark(u(X1, X2, X3, X4))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(fst(X)) → fst(proper(X))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(u(X1, X2, X3, X4)) → u(proper(X1), proper(X2), proper(X3), proper(X4))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
natsFrom(ok(X)) → ok(natsFrom(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
fst(ok(X)) → ok(fst(X))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
u(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(u(X1, X2, X3, X4))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
TAKE(ok(X1), ok(X2)) → TAKE(X1, X2)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(X1, mark(X2)) → TAKE(X1, X2)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(natsFrom(X)) → natsFrom(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(fst(X)) → fst(active(X))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(u(X1, X2, X3, X4)) → u(active(X1), X2, X3, X4)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
natsFrom(mark(X)) → mark(natsFrom(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
fst(mark(X)) → mark(fst(X))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
u(mark(X1), X2, X3, X4) → mark(u(X1, X2, X3, X4))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(fst(X)) → fst(proper(X))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(u(X1, X2, X3, X4)) → u(proper(X1), proper(X2), proper(X3), proper(X4))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
natsFrom(ok(X)) → ok(natsFrom(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
fst(ok(X)) → ok(fst(X))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
u(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(u(X1, X2, X3, X4))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
TAKE(ok(X1), ok(X2)) → TAKE(X1, X2)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(X1, mark(X2)) → TAKE(X1, X2)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
AFTERNTH(ok(X1), ok(X2)) → AFTERNTH(X1, X2)
AFTERNTH(mark(X1), X2) → AFTERNTH(X1, X2)
AFTERNTH(X1, mark(X2)) → AFTERNTH(X1, X2)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(natsFrom(X)) → natsFrom(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(fst(X)) → fst(active(X))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(u(X1, X2, X3, X4)) → u(active(X1), X2, X3, X4)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
natsFrom(mark(X)) → mark(natsFrom(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
fst(mark(X)) → mark(fst(X))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
u(mark(X1), X2, X3, X4) → mark(u(X1, X2, X3, X4))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(fst(X)) → fst(proper(X))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(u(X1, X2, X3, X4)) → u(proper(X1), proper(X2), proper(X3), proper(X4))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
natsFrom(ok(X)) → ok(natsFrom(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
fst(ok(X)) → ok(fst(X))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
u(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(u(X1, X2, X3, X4))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
AFTERNTH(ok(X1), ok(X2)) → AFTERNTH(X1, X2)
AFTERNTH(mark(X1), X2) → AFTERNTH(X1, X2)
AFTERNTH(X1, mark(X2)) → AFTERNTH(X1, X2)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
SEL(mark(X1), X2) → SEL(X1, X2)
SEL(ok(X1), ok(X2)) → SEL(X1, X2)
SEL(X1, mark(X2)) → SEL(X1, X2)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(natsFrom(X)) → natsFrom(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(fst(X)) → fst(active(X))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(u(X1, X2, X3, X4)) → u(active(X1), X2, X3, X4)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
natsFrom(mark(X)) → mark(natsFrom(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
fst(mark(X)) → mark(fst(X))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
u(mark(X1), X2, X3, X4) → mark(u(X1, X2, X3, X4))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(fst(X)) → fst(proper(X))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(u(X1, X2, X3, X4)) → u(proper(X1), proper(X2), proper(X3), proper(X4))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
natsFrom(ok(X)) → ok(natsFrom(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
fst(ok(X)) → ok(fst(X))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
u(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(u(X1, X2, X3, X4))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
SEL(mark(X1), X2) → SEL(X1, X2)
SEL(ok(X1), ok(X2)) → SEL(X1, X2)
SEL(X1, mark(X2)) → SEL(X1, X2)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
TAIL(ok(X)) → TAIL(X)
TAIL(mark(X)) → TAIL(X)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(natsFrom(X)) → natsFrom(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(fst(X)) → fst(active(X))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(u(X1, X2, X3, X4)) → u(active(X1), X2, X3, X4)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
natsFrom(mark(X)) → mark(natsFrom(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
fst(mark(X)) → mark(fst(X))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
u(mark(X1), X2, X3, X4) → mark(u(X1, X2, X3, X4))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(fst(X)) → fst(proper(X))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(u(X1, X2, X3, X4)) → u(proper(X1), proper(X2), proper(X3), proper(X4))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
natsFrom(ok(X)) → ok(natsFrom(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
fst(ok(X)) → ok(fst(X))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
u(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(u(X1, X2, X3, X4))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
TAIL(ok(X)) → TAIL(X)
TAIL(mark(X)) → TAIL(X)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
HEAD(mark(X)) → HEAD(X)
HEAD(ok(X)) → HEAD(X)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(natsFrom(X)) → natsFrom(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(fst(X)) → fst(active(X))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(u(X1, X2, X3, X4)) → u(active(X1), X2, X3, X4)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
natsFrom(mark(X)) → mark(natsFrom(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
fst(mark(X)) → mark(fst(X))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
u(mark(X1), X2, X3, X4) → mark(u(X1, X2, X3, X4))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(fst(X)) → fst(proper(X))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(u(X1, X2, X3, X4)) → u(proper(X1), proper(X2), proper(X3), proper(X4))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
natsFrom(ok(X)) → ok(natsFrom(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
fst(ok(X)) → ok(fst(X))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
u(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(u(X1, X2, X3, X4))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
HEAD(mark(X)) → HEAD(X)
HEAD(ok(X)) → HEAD(X)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
U(mark(X1), X2, X3, X4) → U(X1, X2, X3, X4)
U(ok(X1), ok(X2), ok(X3), ok(X4)) → U(X1, X2, X3, X4)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(natsFrom(X)) → natsFrom(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(fst(X)) → fst(active(X))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(u(X1, X2, X3, X4)) → u(active(X1), X2, X3, X4)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
natsFrom(mark(X)) → mark(natsFrom(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
fst(mark(X)) → mark(fst(X))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
u(mark(X1), X2, X3, X4) → mark(u(X1, X2, X3, X4))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(fst(X)) → fst(proper(X))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(u(X1, X2, X3, X4)) → u(proper(X1), proper(X2), proper(X3), proper(X4))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
natsFrom(ok(X)) → ok(natsFrom(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
fst(ok(X)) → ok(fst(X))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
u(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(u(X1, X2, X3, X4))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
U(ok(X1), ok(X2), ok(X3), ok(X4)) → U(X1, X2, X3, X4)
U(mark(X1), X2, X3, X4) → U(X1, X2, X3, X4)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
SPLITAT(X1, mark(X2)) → SPLITAT(X1, X2)
SPLITAT(mark(X1), X2) → SPLITAT(X1, X2)
SPLITAT(ok(X1), ok(X2)) → SPLITAT(X1, X2)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(natsFrom(X)) → natsFrom(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(fst(X)) → fst(active(X))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(u(X1, X2, X3, X4)) → u(active(X1), X2, X3, X4)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
natsFrom(mark(X)) → mark(natsFrom(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
fst(mark(X)) → mark(fst(X))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
u(mark(X1), X2, X3, X4) → mark(u(X1, X2, X3, X4))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(fst(X)) → fst(proper(X))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(u(X1, X2, X3, X4)) → u(proper(X1), proper(X2), proper(X3), proper(X4))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
natsFrom(ok(X)) → ok(natsFrom(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
fst(ok(X)) → ok(fst(X))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
u(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(u(X1, X2, X3, X4))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
SPLITAT(X1, mark(X2)) → SPLITAT(X1, X2)
SPLITAT(mark(X1), X2) → SPLITAT(X1, X2)
SPLITAT(ok(X1), ok(X2)) → SPLITAT(X1, X2)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
SND(mark(X)) → SND(X)
SND(ok(X)) → SND(X)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(natsFrom(X)) → natsFrom(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(fst(X)) → fst(active(X))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(u(X1, X2, X3, X4)) → u(active(X1), X2, X3, X4)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
natsFrom(mark(X)) → mark(natsFrom(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
fst(mark(X)) → mark(fst(X))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
u(mark(X1), X2, X3, X4) → mark(u(X1, X2, X3, X4))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(fst(X)) → fst(proper(X))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(u(X1, X2, X3, X4)) → u(proper(X1), proper(X2), proper(X3), proper(X4))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
natsFrom(ok(X)) → ok(natsFrom(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
fst(ok(X)) → ok(fst(X))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
u(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(u(X1, X2, X3, X4))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
SND(mark(X)) → SND(X)
SND(ok(X)) → SND(X)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
PAIR(ok(X1), ok(X2)) → PAIR(X1, X2)
PAIR(mark(X1), X2) → PAIR(X1, X2)
PAIR(X1, mark(X2)) → PAIR(X1, X2)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(natsFrom(X)) → natsFrom(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(fst(X)) → fst(active(X))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(u(X1, X2, X3, X4)) → u(active(X1), X2, X3, X4)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
natsFrom(mark(X)) → mark(natsFrom(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
fst(mark(X)) → mark(fst(X))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
u(mark(X1), X2, X3, X4) → mark(u(X1, X2, X3, X4))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(fst(X)) → fst(proper(X))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(u(X1, X2, X3, X4)) → u(proper(X1), proper(X2), proper(X3), proper(X4))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
natsFrom(ok(X)) → ok(natsFrom(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
fst(ok(X)) → ok(fst(X))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
u(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(u(X1, X2, X3, X4))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
PAIR(ok(X1), ok(X2)) → PAIR(X1, X2)
PAIR(mark(X1), X2) → PAIR(X1, X2)
PAIR(X1, mark(X2)) → PAIR(X1, X2)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
FST(ok(X)) → FST(X)
FST(mark(X)) → FST(X)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(natsFrom(X)) → natsFrom(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(fst(X)) → fst(active(X))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(u(X1, X2, X3, X4)) → u(active(X1), X2, X3, X4)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
natsFrom(mark(X)) → mark(natsFrom(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
fst(mark(X)) → mark(fst(X))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
u(mark(X1), X2, X3, X4) → mark(u(X1, X2, X3, X4))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(fst(X)) → fst(proper(X))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(u(X1, X2, X3, X4)) → u(proper(X1), proper(X2), proper(X3), proper(X4))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
natsFrom(ok(X)) → ok(natsFrom(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
fst(ok(X)) → ok(fst(X))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
u(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(u(X1, X2, X3, X4))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
FST(ok(X)) → FST(X)
FST(mark(X)) → FST(X)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
S(ok(X)) → S(X)
S(mark(X)) → S(X)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(natsFrom(X)) → natsFrom(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(fst(X)) → fst(active(X))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(u(X1, X2, X3, X4)) → u(active(X1), X2, X3, X4)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
natsFrom(mark(X)) → mark(natsFrom(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
fst(mark(X)) → mark(fst(X))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
u(mark(X1), X2, X3, X4) → mark(u(X1, X2, X3, X4))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(fst(X)) → fst(proper(X))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(u(X1, X2, X3, X4)) → u(proper(X1), proper(X2), proper(X3), proper(X4))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
natsFrom(ok(X)) → ok(natsFrom(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
fst(ok(X)) → ok(fst(X))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
u(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(u(X1, X2, X3, X4))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
S(ok(X)) → S(X)
S(mark(X)) → S(X)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(natsFrom(X)) → natsFrom(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(fst(X)) → fst(active(X))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(u(X1, X2, X3, X4)) → u(active(X1), X2, X3, X4)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
natsFrom(mark(X)) → mark(natsFrom(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
fst(mark(X)) → mark(fst(X))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
u(mark(X1), X2, X3, X4) → mark(u(X1, X2, X3, X4))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(fst(X)) → fst(proper(X))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(u(X1, X2, X3, X4)) → u(proper(X1), proper(X2), proper(X3), proper(X4))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
natsFrom(ok(X)) → ok(natsFrom(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
fst(ok(X)) → ok(fst(X))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
u(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(u(X1, X2, X3, X4))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
NATSFROM(ok(X)) → NATSFROM(X)
NATSFROM(mark(X)) → NATSFROM(X)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(natsFrom(X)) → natsFrom(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(fst(X)) → fst(active(X))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(u(X1, X2, X3, X4)) → u(active(X1), X2, X3, X4)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
natsFrom(mark(X)) → mark(natsFrom(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
fst(mark(X)) → mark(fst(X))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
u(mark(X1), X2, X3, X4) → mark(u(X1, X2, X3, X4))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(fst(X)) → fst(proper(X))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(u(X1, X2, X3, X4)) → u(proper(X1), proper(X2), proper(X3), proper(X4))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
natsFrom(ok(X)) → ok(natsFrom(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
fst(ok(X)) → ok(fst(X))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
u(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(u(X1, X2, X3, X4))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
NATSFROM(ok(X)) → NATSFROM(X)
NATSFROM(mark(X)) → NATSFROM(X)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
PROPER(u(X1, X2, X3, X4)) → PROPER(X2)
PROPER(sel(X1, X2)) → PROPER(X2)
PROPER(pair(X1, X2)) → PROPER(X1)
PROPER(splitAt(X1, X2)) → PROPER(X2)
PROPER(pair(X1, X2)) → PROPER(X2)
PROPER(head(X)) → PROPER(X)
PROPER(natsFrom(X)) → PROPER(X)
PROPER(u(X1, X2, X3, X4)) → PROPER(X1)
PROPER(take(X1, X2)) → PROPER(X1)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(s(X)) → PROPER(X)
PROPER(u(X1, X2, X3, X4)) → PROPER(X3)
PROPER(sel(X1, X2)) → PROPER(X1)
PROPER(tail(X)) → PROPER(X)
PROPER(splitAt(X1, X2)) → PROPER(X1)
PROPER(take(X1, X2)) → PROPER(X2)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(snd(X)) → PROPER(X)
PROPER(afterNth(X1, X2)) → PROPER(X1)
PROPER(afterNth(X1, X2)) → PROPER(X2)
PROPER(fst(X)) → PROPER(X)
PROPER(u(X1, X2, X3, X4)) → PROPER(X4)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(natsFrom(X)) → natsFrom(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(fst(X)) → fst(active(X))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(u(X1, X2, X3, X4)) → u(active(X1), X2, X3, X4)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
natsFrom(mark(X)) → mark(natsFrom(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
fst(mark(X)) → mark(fst(X))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
u(mark(X1), X2, X3, X4) → mark(u(X1, X2, X3, X4))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(fst(X)) → fst(proper(X))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(u(X1, X2, X3, X4)) → u(proper(X1), proper(X2), proper(X3), proper(X4))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
natsFrom(ok(X)) → ok(natsFrom(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
fst(ok(X)) → ok(fst(X))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
u(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(u(X1, X2, X3, X4))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
PROPER(u(X1, X2, X3, X4)) → PROPER(X2)
PROPER(sel(X1, X2)) → PROPER(X2)
PROPER(pair(X1, X2)) → PROPER(X1)
PROPER(splitAt(X1, X2)) → PROPER(X2)
PROPER(pair(X1, X2)) → PROPER(X2)
PROPER(head(X)) → PROPER(X)
PROPER(natsFrom(X)) → PROPER(X)
PROPER(u(X1, X2, X3, X4)) → PROPER(X1)
PROPER(take(X1, X2)) → PROPER(X1)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(s(X)) → PROPER(X)
PROPER(u(X1, X2, X3, X4)) → PROPER(X3)
PROPER(splitAt(X1, X2)) → PROPER(X1)
PROPER(tail(X)) → PROPER(X)
PROPER(sel(X1, X2)) → PROPER(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(take(X1, X2)) → PROPER(X2)
PROPER(snd(X)) → PROPER(X)
PROPER(afterNth(X1, X2)) → PROPER(X1)
PROPER(afterNth(X1, X2)) → PROPER(X2)
PROPER(fst(X)) → PROPER(X)
PROPER(u(X1, X2, X3, X4)) → PROPER(X4)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
ACTIVE(pair(X1, X2)) → ACTIVE(X2)
ACTIVE(snd(X)) → ACTIVE(X)
ACTIVE(pair(X1, X2)) → ACTIVE(X1)
ACTIVE(natsFrom(X)) → ACTIVE(X)
ACTIVE(take(X1, X2)) → ACTIVE(X2)
ACTIVE(sel(X1, X2)) → ACTIVE(X1)
ACTIVE(splitAt(X1, X2)) → ACTIVE(X2)
ACTIVE(afterNth(X1, X2)) → ACTIVE(X1)
ACTIVE(sel(X1, X2)) → ACTIVE(X2)
ACTIVE(afterNth(X1, X2)) → ACTIVE(X2)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(splitAt(X1, X2)) → ACTIVE(X1)
ACTIVE(fst(X)) → ACTIVE(X)
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(u(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(take(X1, X2)) → ACTIVE(X1)
ACTIVE(tail(X)) → ACTIVE(X)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(natsFrom(X)) → natsFrom(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(fst(X)) → fst(active(X))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(u(X1, X2, X3, X4)) → u(active(X1), X2, X3, X4)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
natsFrom(mark(X)) → mark(natsFrom(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
fst(mark(X)) → mark(fst(X))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
u(mark(X1), X2, X3, X4) → mark(u(X1, X2, X3, X4))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(fst(X)) → fst(proper(X))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(u(X1, X2, X3, X4)) → u(proper(X1), proper(X2), proper(X3), proper(X4))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
natsFrom(ok(X)) → ok(natsFrom(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
fst(ok(X)) → ok(fst(X))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
u(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(u(X1, X2, X3, X4))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
ACTIVE(pair(X1, X2)) → ACTIVE(X2)
ACTIVE(snd(X)) → ACTIVE(X)
ACTIVE(pair(X1, X2)) → ACTIVE(X1)
ACTIVE(natsFrom(X)) → ACTIVE(X)
ACTIVE(take(X1, X2)) → ACTIVE(X2)
ACTIVE(sel(X1, X2)) → ACTIVE(X1)
ACTIVE(splitAt(X1, X2)) → ACTIVE(X2)
ACTIVE(afterNth(X1, X2)) → ACTIVE(X1)
ACTIVE(sel(X1, X2)) → ACTIVE(X2)
ACTIVE(afterNth(X1, X2)) → ACTIVE(X2)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(splitAt(X1, X2)) → ACTIVE(X1)
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(fst(X)) → ACTIVE(X)
ACTIVE(u(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(tail(X)) → ACTIVE(X)
ACTIVE(take(X1, X2)) → ACTIVE(X1)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
TOP(mark(X)) → TOP(proper(X))
TOP(ok(X)) → TOP(active(X))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(natsFrom(X)) → natsFrom(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(fst(X)) → fst(active(X))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(u(X1, X2, X3, X4)) → u(active(X1), X2, X3, X4)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
natsFrom(mark(X)) → mark(natsFrom(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
fst(mark(X)) → mark(fst(X))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
u(mark(X1), X2, X3, X4) → mark(u(X1, X2, X3, X4))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(fst(X)) → fst(proper(X))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(u(X1, X2, X3, X4)) → u(proper(X1), proper(X2), proper(X3), proper(X4))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
natsFrom(ok(X)) → ok(natsFrom(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
fst(ok(X)) → ok(fst(X))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
u(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(u(X1, X2, X3, X4))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
POL(0) = 0
POL(TOP(x1)) = x1
POL(active(x1)) = 2·x1
POL(afterNth(x1, x2)) = 2·x1 + 2·x2
POL(cons(x1, x2)) = 2·x1 + x2
POL(fst(x1)) = x1
POL(head(x1)) = 2·x1
POL(mark(x1)) = x1
POL(natsFrom(x1)) = 2·x1
POL(nil) = 0
POL(ok(x1)) = 2·x1
POL(pair(x1, x2)) = 2·x1 + 2·x2
POL(proper(x1)) = x1
POL(s(x1)) = x1
POL(sel(x1, x2)) = 2·x1 + 2·x2
POL(snd(x1)) = x1
POL(splitAt(x1, x2)) = x1 + x2
POL(tail(x1)) = x1
POL(take(x1, x2)) = 2·x1 + x2
POL(u(x1, x2, x3, x4)) = x1 + x2 + 2·x3 + x4
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
TOP(mark(X)) → TOP(proper(X))
TOP(ok(X)) → TOP(active(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(fst(X)) → fst(proper(X))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(u(X1, X2, X3, X4)) → u(proper(X1), proper(X2), proper(X3), proper(X4))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
tail(ok(X)) → ok(tail(X))
head(mark(X)) → mark(head(X))
head(ok(X)) → ok(head(X))
u(mark(X1), X2, X3, X4) → mark(u(X1, X2, X3, X4))
u(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(u(X1, X2, X3, X4))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
snd(mark(X)) → mark(snd(X))
snd(ok(X)) → ok(snd(X))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
fst(mark(X)) → mark(fst(X))
fst(ok(X)) → ok(fst(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
natsFrom(ok(X)) → ok(natsFrom(X))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(natsFrom(X)) → natsFrom(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(fst(X)) → fst(active(X))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(u(X1, X2, X3, X4)) → u(active(X1), X2, X3, X4)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(afterNth(x0, x1))) → TOP(afterNth(proper(x0), proper(x1)))
TOP(mark(splitAt(x0, x1))) → TOP(splitAt(proper(x0), proper(x1)))
TOP(mark(0)) → TOP(ok(0))
TOP(mark(tail(x0))) → TOP(tail(proper(x0)))
TOP(mark(sel(x0, x1))) → TOP(sel(proper(x0), proper(x1)))
TOP(mark(snd(x0))) → TOP(snd(proper(x0)))
TOP(mark(head(x0))) → TOP(head(proper(x0)))
TOP(mark(fst(x0))) → TOP(fst(proper(x0)))
TOP(mark(u(x0, x1, x2, x3))) → TOP(u(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(mark(natsFrom(x0))) → TOP(natsFrom(proper(x0)))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(nil)) → TOP(ok(nil))
TOP(mark(pair(x0, x1))) → TOP(pair(proper(x0), proper(x1)))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(afterNth(x0, x1))) → TOP(afterNth(proper(x0), proper(x1)))
TOP(mark(splitAt(x0, x1))) → TOP(splitAt(proper(x0), proper(x1)))
TOP(mark(0)) → TOP(ok(0))
TOP(mark(tail(x0))) → TOP(tail(proper(x0)))
TOP(mark(sel(x0, x1))) → TOP(sel(proper(x0), proper(x1)))
TOP(mark(snd(x0))) → TOP(snd(proper(x0)))
TOP(mark(head(x0))) → TOP(head(proper(x0)))
TOP(mark(fst(x0))) → TOP(fst(proper(x0)))
TOP(mark(u(x0, x1, x2, x3))) → TOP(u(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(mark(natsFrom(x0))) → TOP(natsFrom(proper(x0)))
TOP(mark(nil)) → TOP(ok(nil))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(pair(x0, x1))) → TOP(pair(proper(x0), proper(x1)))
TOP(ok(X)) → TOP(active(X))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(fst(X)) → fst(proper(X))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(u(X1, X2, X3, X4)) → u(proper(X1), proper(X2), proper(X3), proper(X4))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
tail(ok(X)) → ok(tail(X))
head(mark(X)) → mark(head(X))
head(ok(X)) → ok(head(X))
u(mark(X1), X2, X3, X4) → mark(u(X1, X2, X3, X4))
u(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(u(X1, X2, X3, X4))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
snd(mark(X)) → mark(snd(X))
snd(ok(X)) → ok(snd(X))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
fst(mark(X)) → mark(fst(X))
fst(ok(X)) → ok(fst(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
natsFrom(ok(X)) → ok(natsFrom(X))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(natsFrom(X)) → natsFrom(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(fst(X)) → fst(active(X))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(u(X1, X2, X3, X4)) → u(active(X1), X2, X3, X4)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
TOP(ok(splitAt(x0, x1))) → TOP(splitAt(active(x0), x1))
TOP(ok(afterNth(x0, x1))) → TOP(mark(snd(splitAt(x0, x1))))
TOP(ok(u(x0, x1, x2, x3))) → TOP(u(active(x0), x1, x2, x3))
TOP(ok(natsFrom(x0))) → TOP(natsFrom(active(x0)))
TOP(ok(fst(x0))) → TOP(fst(active(x0)))
TOP(ok(natsFrom(x0))) → TOP(mark(cons(x0, natsFrom(s(x0)))))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(head(x0))) → TOP(head(active(x0)))
TOP(ok(splitAt(s(x0), cons(x1, x2)))) → TOP(mark(u(splitAt(x0, x2), x0, x1, x2)))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(ok(fst(pair(x0, x1)))) → TOP(mark(x0))
TOP(ok(sel(x0, x1))) → TOP(sel(x0, active(x1)))
TOP(ok(pair(x0, x1))) → TOP(pair(active(x0), x1))
TOP(ok(afterNth(x0, x1))) → TOP(afterNth(x0, active(x1)))
TOP(ok(snd(x0))) → TOP(snd(active(x0)))
TOP(ok(sel(x0, x1))) → TOP(mark(head(afterNth(x0, x1))))
TOP(ok(snd(pair(x0, x1)))) → TOP(mark(x1))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(sel(x0, x1))) → TOP(sel(active(x0), x1))
TOP(ok(splitAt(0, x0))) → TOP(mark(pair(nil, x0)))
TOP(ok(splitAt(x0, x1))) → TOP(splitAt(x0, active(x1)))
TOP(ok(u(pair(x0, x1), x2, x3, x4))) → TOP(mark(pair(cons(x3, x0), x1)))
TOP(ok(head(cons(x0, x1)))) → TOP(mark(x0))
TOP(ok(take(x0, x1))) → TOP(mark(fst(splitAt(x0, x1))))
TOP(ok(tail(cons(x0, x1)))) → TOP(mark(x1))
TOP(ok(afterNth(x0, x1))) → TOP(afterNth(active(x0), x1))
TOP(ok(pair(x0, x1))) → TOP(pair(x0, active(x1)))
TOP(ok(tail(x0))) → TOP(tail(active(x0)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
TOP(ok(splitAt(x0, x1))) → TOP(splitAt(active(x0), x1))
TOP(ok(afterNth(x0, x1))) → TOP(mark(snd(splitAt(x0, x1))))
TOP(ok(u(x0, x1, x2, x3))) → TOP(u(active(x0), x1, x2, x3))
TOP(mark(afterNth(x0, x1))) → TOP(afterNth(proper(x0), proper(x1)))
TOP(ok(natsFrom(x0))) → TOP(natsFrom(active(x0)))
TOP(ok(fst(x0))) → TOP(fst(active(x0)))
TOP(mark(tail(x0))) → TOP(tail(proper(x0)))
TOP(mark(snd(x0))) → TOP(snd(proper(x0)))
TOP(mark(head(x0))) → TOP(head(proper(x0)))
TOP(ok(natsFrom(x0))) → TOP(mark(cons(x0, natsFrom(s(x0)))))
TOP(mark(fst(x0))) → TOP(fst(proper(x0)))
TOP(mark(u(x0, x1, x2, x3))) → TOP(u(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(head(x0))) → TOP(head(active(x0)))
TOP(mark(nil)) → TOP(ok(nil))
TOP(ok(splitAt(s(x0), cons(x1, x2)))) → TOP(mark(u(splitAt(x0, x2), x0, x1, x2)))
TOP(mark(pair(x0, x1))) → TOP(pair(proper(x0), proper(x1)))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(ok(sel(x0, x1))) → TOP(sel(x0, active(x1)))
TOP(ok(fst(pair(x0, x1)))) → TOP(mark(x0))
TOP(ok(pair(x0, x1))) → TOP(pair(active(x0), x1))
TOP(ok(snd(x0))) → TOP(snd(active(x0)))
TOP(ok(afterNth(x0, x1))) → TOP(afterNth(x0, active(x1)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(splitAt(x0, x1))) → TOP(splitAt(proper(x0), proper(x1)))
TOP(ok(sel(x0, x1))) → TOP(mark(head(afterNth(x0, x1))))
TOP(mark(0)) → TOP(ok(0))
TOP(ok(snd(pair(x0, x1)))) → TOP(mark(x1))
TOP(ok(sel(x0, x1))) → TOP(sel(active(x0), x1))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(splitAt(0, x0))) → TOP(mark(pair(nil, x0)))
TOP(ok(splitAt(x0, x1))) → TOP(splitAt(x0, active(x1)))
TOP(mark(sel(x0, x1))) → TOP(sel(proper(x0), proper(x1)))
TOP(ok(u(pair(x0, x1), x2, x3, x4))) → TOP(mark(pair(cons(x3, x0), x1)))
TOP(ok(head(cons(x0, x1)))) → TOP(mark(x0))
TOP(mark(natsFrom(x0))) → TOP(natsFrom(proper(x0)))
TOP(ok(take(x0, x1))) → TOP(mark(fst(splitAt(x0, x1))))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(tail(cons(x0, x1)))) → TOP(mark(x1))
TOP(ok(afterNth(x0, x1))) → TOP(afterNth(active(x0), x1))
TOP(ok(tail(x0))) → TOP(tail(active(x0)))
TOP(ok(pair(x0, x1))) → TOP(pair(x0, active(x1)))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(fst(X)) → fst(proper(X))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(u(X1, X2, X3, X4)) → u(proper(X1), proper(X2), proper(X3), proper(X4))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
tail(ok(X)) → ok(tail(X))
head(mark(X)) → mark(head(X))
head(ok(X)) → ok(head(X))
u(mark(X1), X2, X3, X4) → mark(u(X1, X2, X3, X4))
u(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(u(X1, X2, X3, X4))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
snd(mark(X)) → mark(snd(X))
snd(ok(X)) → ok(snd(X))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
fst(mark(X)) → mark(fst(X))
fst(ok(X)) → ok(fst(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
natsFrom(ok(X)) → ok(natsFrom(X))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(natsFrom(X)) → natsFrom(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(fst(X)) → fst(active(X))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(u(X1, X2, X3, X4)) → u(active(X1), X2, X3, X4)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
TOP(ok(splitAt(x0, x1))) → TOP(splitAt(active(x0), x1))
TOP(ok(afterNth(x0, x1))) → TOP(mark(snd(splitAt(x0, x1))))
TOP(ok(u(x0, x1, x2, x3))) → TOP(u(active(x0), x1, x2, x3))
TOP(mark(afterNth(x0, x1))) → TOP(afterNth(proper(x0), proper(x1)))
TOP(ok(natsFrom(x0))) → TOP(natsFrom(active(x0)))
TOP(ok(fst(x0))) → TOP(fst(active(x0)))
TOP(mark(tail(x0))) → TOP(tail(proper(x0)))
TOP(mark(head(x0))) → TOP(head(proper(x0)))
TOP(mark(snd(x0))) → TOP(snd(proper(x0)))
TOP(ok(natsFrom(x0))) → TOP(mark(cons(x0, natsFrom(s(x0)))))
TOP(mark(u(x0, x1, x2, x3))) → TOP(u(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(mark(fst(x0))) → TOP(fst(proper(x0)))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(head(x0))) → TOP(head(active(x0)))
TOP(mark(pair(x0, x1))) → TOP(pair(proper(x0), proper(x1)))
TOP(ok(splitAt(s(x0), cons(x1, x2)))) → TOP(mark(u(splitAt(x0, x2), x0, x1, x2)))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(ok(sel(x0, x1))) → TOP(sel(x0, active(x1)))
TOP(ok(fst(pair(x0, x1)))) → TOP(mark(x0))
TOP(ok(pair(x0, x1))) → TOP(pair(active(x0), x1))
TOP(ok(snd(x0))) → TOP(snd(active(x0)))
TOP(ok(afterNth(x0, x1))) → TOP(afterNth(x0, active(x1)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(splitAt(x0, x1))) → TOP(splitAt(proper(x0), proper(x1)))
TOP(ok(sel(x0, x1))) → TOP(mark(head(afterNth(x0, x1))))
TOP(ok(snd(pair(x0, x1)))) → TOP(mark(x1))
TOP(ok(sel(x0, x1))) → TOP(sel(active(x0), x1))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(splitAt(0, x0))) → TOP(mark(pair(nil, x0)))
TOP(ok(splitAt(x0, x1))) → TOP(splitAt(x0, active(x1)))
TOP(mark(sel(x0, x1))) → TOP(sel(proper(x0), proper(x1)))
TOP(ok(u(pair(x0, x1), x2, x3, x4))) → TOP(mark(pair(cons(x3, x0), x1)))
TOP(ok(head(cons(x0, x1)))) → TOP(mark(x0))
TOP(mark(natsFrom(x0))) → TOP(natsFrom(proper(x0)))
TOP(ok(take(x0, x1))) → TOP(mark(fst(splitAt(x0, x1))))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(tail(cons(x0, x1)))) → TOP(mark(x1))
TOP(ok(afterNth(x0, x1))) → TOP(afterNth(active(x0), x1))
TOP(ok(tail(x0))) → TOP(tail(active(x0)))
TOP(ok(pair(x0, x1))) → TOP(pair(x0, active(x1)))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(fst(X)) → fst(proper(X))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(u(X1, X2, X3, X4)) → u(proper(X1), proper(X2), proper(X3), proper(X4))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
tail(ok(X)) → ok(tail(X))
head(mark(X)) → mark(head(X))
head(ok(X)) → ok(head(X))
u(mark(X1), X2, X3, X4) → mark(u(X1, X2, X3, X4))
u(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(u(X1, X2, X3, X4))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
snd(mark(X)) → mark(snd(X))
snd(ok(X)) → ok(snd(X))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
fst(mark(X)) → mark(fst(X))
fst(ok(X)) → ok(fst(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
natsFrom(ok(X)) → ok(natsFrom(X))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(natsFrom(X)) → natsFrom(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(fst(X)) → fst(active(X))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(u(X1, X2, X3, X4)) → u(active(X1), X2, X3, X4)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
TOP(ok(sel(x0, x1))) → TOP(mark(head(afterNth(x0, x1))))
Used ordering: Polynomial interpretation [25]:
TOP(ok(splitAt(x0, x1))) → TOP(splitAt(active(x0), x1))
TOP(ok(afterNth(x0, x1))) → TOP(mark(snd(splitAt(x0, x1))))
TOP(ok(u(x0, x1, x2, x3))) → TOP(u(active(x0), x1, x2, x3))
TOP(mark(afterNth(x0, x1))) → TOP(afterNth(proper(x0), proper(x1)))
TOP(ok(natsFrom(x0))) → TOP(natsFrom(active(x0)))
TOP(ok(fst(x0))) → TOP(fst(active(x0)))
TOP(mark(tail(x0))) → TOP(tail(proper(x0)))
TOP(mark(head(x0))) → TOP(head(proper(x0)))
TOP(mark(snd(x0))) → TOP(snd(proper(x0)))
TOP(ok(natsFrom(x0))) → TOP(mark(cons(x0, natsFrom(s(x0)))))
TOP(mark(u(x0, x1, x2, x3))) → TOP(u(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(mark(fst(x0))) → TOP(fst(proper(x0)))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(head(x0))) → TOP(head(active(x0)))
TOP(mark(pair(x0, x1))) → TOP(pair(proper(x0), proper(x1)))
TOP(ok(splitAt(s(x0), cons(x1, x2)))) → TOP(mark(u(splitAt(x0, x2), x0, x1, x2)))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(ok(sel(x0, x1))) → TOP(sel(x0, active(x1)))
TOP(ok(fst(pair(x0, x1)))) → TOP(mark(x0))
TOP(ok(pair(x0, x1))) → TOP(pair(active(x0), x1))
TOP(ok(snd(x0))) → TOP(snd(active(x0)))
TOP(ok(afterNth(x0, x1))) → TOP(afterNth(x0, active(x1)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(splitAt(x0, x1))) → TOP(splitAt(proper(x0), proper(x1)))
TOP(ok(snd(pair(x0, x1)))) → TOP(mark(x1))
TOP(ok(sel(x0, x1))) → TOP(sel(active(x0), x1))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(splitAt(0, x0))) → TOP(mark(pair(nil, x0)))
TOP(ok(splitAt(x0, x1))) → TOP(splitAt(x0, active(x1)))
TOP(mark(sel(x0, x1))) → TOP(sel(proper(x0), proper(x1)))
TOP(ok(u(pair(x0, x1), x2, x3, x4))) → TOP(mark(pair(cons(x3, x0), x1)))
TOP(ok(head(cons(x0, x1)))) → TOP(mark(x0))
TOP(mark(natsFrom(x0))) → TOP(natsFrom(proper(x0)))
TOP(ok(take(x0, x1))) → TOP(mark(fst(splitAt(x0, x1))))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(tail(cons(x0, x1)))) → TOP(mark(x1))
TOP(ok(afterNth(x0, x1))) → TOP(afterNth(active(x0), x1))
TOP(ok(tail(x0))) → TOP(tail(active(x0)))
TOP(ok(pair(x0, x1))) → TOP(pair(x0, active(x1)))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
POL(0) = 0
POL(TOP(x1)) = x1
POL(active(x1)) = x1
POL(afterNth(x1, x2)) = x2
POL(cons(x1, x2)) = x1 + x2
POL(fst(x1)) = x1
POL(head(x1)) = x1
POL(mark(x1)) = x1
POL(natsFrom(x1)) = x1
POL(nil) = 0
POL(ok(x1)) = x1
POL(pair(x1, x2)) = x1 + x2
POL(proper(x1)) = x1
POL(s(x1)) = 0
POL(sel(x1, x2)) = 1 + x2
POL(snd(x1)) = x1
POL(splitAt(x1, x2)) = x2
POL(tail(x1)) = x1
POL(take(x1, x2)) = x2
POL(u(x1, x2, x3, x4)) = x1 + x3
proper(nil) → ok(nil)
proper(u(X1, X2, X3, X4)) → u(proper(X1), proper(X2), proper(X3), proper(X4))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(snd(X)) → snd(proper(X))
proper(s(X)) → s(proper(X))
proper(fst(X)) → fst(proper(X))
fst(mark(X)) → mark(fst(X))
fst(ok(X)) → ok(fst(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
natsFrom(ok(X)) → ok(natsFrom(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
snd(mark(X)) → mark(snd(X))
snd(ok(X)) → ok(snd(X))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
tail(mark(X)) → mark(tail(X))
head(ok(X)) → ok(head(X))
head(mark(X)) → mark(head(X))
u(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(u(X1, X2, X3, X4))
u(mark(X1), X2, X3, X4) → mark(u(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
active(take(X1, X2)) → take(X1, active(X2))
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(take(X1, X2)) → take(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(tail(X)) → tail(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(u(X1, X2, X3, X4)) → u(active(X1), X2, X3, X4)
active(head(X)) → head(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(pair(X1, X2)) → pair(X1, active(X2))
active(snd(X)) → snd(active(X))
active(pair(X1, X2)) → pair(active(X1), X2)
active(fst(X)) → fst(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(tail(cons(N, XS))) → mark(XS)
active(head(cons(N, XS))) → mark(N)
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(snd(pair(XS, YS))) → mark(YS)
active(fst(pair(XS, YS))) → mark(XS)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
TOP(ok(splitAt(x0, x1))) → TOP(splitAt(active(x0), x1))
TOP(ok(u(x0, x1, x2, x3))) → TOP(u(active(x0), x1, x2, x3))
TOP(ok(afterNth(x0, x1))) → TOP(mark(snd(splitAt(x0, x1))))
TOP(mark(afterNth(x0, x1))) → TOP(afterNth(proper(x0), proper(x1)))
TOP(ok(fst(x0))) → TOP(fst(active(x0)))
TOP(ok(natsFrom(x0))) → TOP(natsFrom(active(x0)))
TOP(mark(tail(x0))) → TOP(tail(proper(x0)))
TOP(ok(natsFrom(x0))) → TOP(mark(cons(x0, natsFrom(s(x0)))))
TOP(mark(snd(x0))) → TOP(snd(proper(x0)))
TOP(mark(head(x0))) → TOP(head(proper(x0)))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(mark(fst(x0))) → TOP(fst(proper(x0)))
TOP(mark(u(x0, x1, x2, x3))) → TOP(u(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(head(x0))) → TOP(head(active(x0)))
TOP(mark(pair(x0, x1))) → TOP(pair(proper(x0), proper(x1)))
TOP(ok(splitAt(s(x0), cons(x1, x2)))) → TOP(mark(u(splitAt(x0, x2), x0, x1, x2)))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(ok(sel(x0, x1))) → TOP(sel(x0, active(x1)))
TOP(ok(fst(pair(x0, x1)))) → TOP(mark(x0))
TOP(ok(pair(x0, x1))) → TOP(pair(active(x0), x1))
TOP(ok(snd(x0))) → TOP(snd(active(x0)))
TOP(ok(afterNth(x0, x1))) → TOP(afterNth(x0, active(x1)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(splitAt(x0, x1))) → TOP(splitAt(proper(x0), proper(x1)))
TOP(ok(snd(pair(x0, x1)))) → TOP(mark(x1))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(sel(x0, x1))) → TOP(sel(active(x0), x1))
TOP(ok(splitAt(0, x0))) → TOP(mark(pair(nil, x0)))
TOP(mark(sel(x0, x1))) → TOP(sel(proper(x0), proper(x1)))
TOP(ok(splitAt(x0, x1))) → TOP(splitAt(x0, active(x1)))
TOP(ok(u(pair(x0, x1), x2, x3, x4))) → TOP(mark(pair(cons(x3, x0), x1)))
TOP(ok(head(cons(x0, x1)))) → TOP(mark(x0))
TOP(mark(natsFrom(x0))) → TOP(natsFrom(proper(x0)))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(take(x0, x1))) → TOP(mark(fst(splitAt(x0, x1))))
TOP(ok(tail(cons(x0, x1)))) → TOP(mark(x1))
TOP(ok(afterNth(x0, x1))) → TOP(afterNth(active(x0), x1))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
TOP(ok(pair(x0, x1))) → TOP(pair(x0, active(x1)))
TOP(ok(tail(x0))) → TOP(tail(active(x0)))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(fst(X)) → fst(proper(X))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(u(X1, X2, X3, X4)) → u(proper(X1), proper(X2), proper(X3), proper(X4))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
tail(ok(X)) → ok(tail(X))
head(mark(X)) → mark(head(X))
head(ok(X)) → ok(head(X))
u(mark(X1), X2, X3, X4) → mark(u(X1, X2, X3, X4))
u(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(u(X1, X2, X3, X4))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
snd(mark(X)) → mark(snd(X))
snd(ok(X)) → ok(snd(X))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
fst(mark(X)) → mark(fst(X))
fst(ok(X)) → ok(fst(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
natsFrom(ok(X)) → ok(natsFrom(X))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(natsFrom(X)) → natsFrom(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(fst(X)) → fst(active(X))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(u(X1, X2, X3, X4)) → u(active(X1), X2, X3, X4)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
TOP(ok(fst(pair(x0, x1)))) → TOP(mark(x0))
Used ordering: Polynomial interpretation [25]:
TOP(ok(splitAt(x0, x1))) → TOP(splitAt(active(x0), x1))
TOP(ok(u(x0, x1, x2, x3))) → TOP(u(active(x0), x1, x2, x3))
TOP(ok(afterNth(x0, x1))) → TOP(mark(snd(splitAt(x0, x1))))
TOP(mark(afterNth(x0, x1))) → TOP(afterNth(proper(x0), proper(x1)))
TOP(ok(fst(x0))) → TOP(fst(active(x0)))
TOP(ok(natsFrom(x0))) → TOP(natsFrom(active(x0)))
TOP(mark(tail(x0))) → TOP(tail(proper(x0)))
TOP(ok(natsFrom(x0))) → TOP(mark(cons(x0, natsFrom(s(x0)))))
TOP(mark(snd(x0))) → TOP(snd(proper(x0)))
TOP(mark(head(x0))) → TOP(head(proper(x0)))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(mark(fst(x0))) → TOP(fst(proper(x0)))
TOP(mark(u(x0, x1, x2, x3))) → TOP(u(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(head(x0))) → TOP(head(active(x0)))
TOP(mark(pair(x0, x1))) → TOP(pair(proper(x0), proper(x1)))
TOP(ok(splitAt(s(x0), cons(x1, x2)))) → TOP(mark(u(splitAt(x0, x2), x0, x1, x2)))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(ok(sel(x0, x1))) → TOP(sel(x0, active(x1)))
TOP(ok(pair(x0, x1))) → TOP(pair(active(x0), x1))
TOP(ok(snd(x0))) → TOP(snd(active(x0)))
TOP(ok(afterNth(x0, x1))) → TOP(afterNth(x0, active(x1)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(splitAt(x0, x1))) → TOP(splitAt(proper(x0), proper(x1)))
TOP(ok(snd(pair(x0, x1)))) → TOP(mark(x1))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(sel(x0, x1))) → TOP(sel(active(x0), x1))
TOP(ok(splitAt(0, x0))) → TOP(mark(pair(nil, x0)))
TOP(mark(sel(x0, x1))) → TOP(sel(proper(x0), proper(x1)))
TOP(ok(splitAt(x0, x1))) → TOP(splitAt(x0, active(x1)))
TOP(ok(u(pair(x0, x1), x2, x3, x4))) → TOP(mark(pair(cons(x3, x0), x1)))
TOP(ok(head(cons(x0, x1)))) → TOP(mark(x0))
TOP(mark(natsFrom(x0))) → TOP(natsFrom(proper(x0)))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(take(x0, x1))) → TOP(mark(fst(splitAt(x0, x1))))
TOP(ok(tail(cons(x0, x1)))) → TOP(mark(x1))
TOP(ok(afterNth(x0, x1))) → TOP(afterNth(active(x0), x1))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
TOP(ok(pair(x0, x1))) → TOP(pair(x0, active(x1)))
TOP(ok(tail(x0))) → TOP(tail(active(x0)))
POL(0) = 0
POL(TOP(x1)) = x1
POL(active(x1)) = x1
POL(afterNth(x1, x2)) = x2
POL(cons(x1, x2)) = x1 + x2
POL(fst(x1)) = 1 + x1
POL(head(x1)) = x1
POL(mark(x1)) = x1
POL(natsFrom(x1)) = x1
POL(nil) = 0
POL(ok(x1)) = x1
POL(pair(x1, x2)) = x1 + x2
POL(proper(x1)) = x1
POL(s(x1)) = 0
POL(sel(x1, x2)) = x2
POL(snd(x1)) = x1
POL(splitAt(x1, x2)) = x2
POL(tail(x1)) = x1
POL(take(x1, x2)) = 1 + x2
POL(u(x1, x2, x3, x4)) = x1 + x3
proper(nil) → ok(nil)
proper(u(X1, X2, X3, X4)) → u(proper(X1), proper(X2), proper(X3), proper(X4))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(snd(X)) → snd(proper(X))
proper(s(X)) → s(proper(X))
proper(fst(X)) → fst(proper(X))
fst(mark(X)) → mark(fst(X))
fst(ok(X)) → ok(fst(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
natsFrom(ok(X)) → ok(natsFrom(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
snd(mark(X)) → mark(snd(X))
snd(ok(X)) → ok(snd(X))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
tail(mark(X)) → mark(tail(X))
head(ok(X)) → ok(head(X))
head(mark(X)) → mark(head(X))
u(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(u(X1, X2, X3, X4))
u(mark(X1), X2, X3, X4) → mark(u(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
active(take(X1, X2)) → take(X1, active(X2))
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(take(X1, X2)) → take(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(tail(X)) → tail(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(u(X1, X2, X3, X4)) → u(active(X1), X2, X3, X4)
active(head(X)) → head(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(pair(X1, X2)) → pair(X1, active(X2))
active(snd(X)) → snd(active(X))
active(pair(X1, X2)) → pair(active(X1), X2)
active(fst(X)) → fst(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(tail(cons(N, XS))) → mark(XS)
active(head(cons(N, XS))) → mark(N)
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(snd(pair(XS, YS))) → mark(YS)
active(fst(pair(XS, YS))) → mark(XS)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
TOP(ok(splitAt(x0, x1))) → TOP(splitAt(active(x0), x1))
TOP(ok(afterNth(x0, x1))) → TOP(mark(snd(splitAt(x0, x1))))
TOP(ok(u(x0, x1, x2, x3))) → TOP(u(active(x0), x1, x2, x3))
TOP(mark(afterNth(x0, x1))) → TOP(afterNth(proper(x0), proper(x1)))
TOP(ok(natsFrom(x0))) → TOP(natsFrom(active(x0)))
TOP(ok(fst(x0))) → TOP(fst(active(x0)))
TOP(mark(tail(x0))) → TOP(tail(proper(x0)))
TOP(mark(head(x0))) → TOP(head(proper(x0)))
TOP(mark(snd(x0))) → TOP(snd(proper(x0)))
TOP(ok(natsFrom(x0))) → TOP(mark(cons(x0, natsFrom(s(x0)))))
TOP(mark(u(x0, x1, x2, x3))) → TOP(u(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(mark(fst(x0))) → TOP(fst(proper(x0)))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(head(x0))) → TOP(head(active(x0)))
TOP(mark(pair(x0, x1))) → TOP(pair(proper(x0), proper(x1)))
TOP(ok(splitAt(s(x0), cons(x1, x2)))) → TOP(mark(u(splitAt(x0, x2), x0, x1, x2)))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(ok(sel(x0, x1))) → TOP(sel(x0, active(x1)))
TOP(ok(pair(x0, x1))) → TOP(pair(active(x0), x1))
TOP(ok(snd(x0))) → TOP(snd(active(x0)))
TOP(ok(afterNth(x0, x1))) → TOP(afterNth(x0, active(x1)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(splitAt(x0, x1))) → TOP(splitAt(proper(x0), proper(x1)))
TOP(ok(snd(pair(x0, x1)))) → TOP(mark(x1))
TOP(ok(sel(x0, x1))) → TOP(sel(active(x0), x1))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(splitAt(0, x0))) → TOP(mark(pair(nil, x0)))
TOP(ok(splitAt(x0, x1))) → TOP(splitAt(x0, active(x1)))
TOP(mark(sel(x0, x1))) → TOP(sel(proper(x0), proper(x1)))
TOP(ok(u(pair(x0, x1), x2, x3, x4))) → TOP(mark(pair(cons(x3, x0), x1)))
TOP(ok(head(cons(x0, x1)))) → TOP(mark(x0))
TOP(mark(natsFrom(x0))) → TOP(natsFrom(proper(x0)))
TOP(ok(take(x0, x1))) → TOP(mark(fst(splitAt(x0, x1))))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(tail(cons(x0, x1)))) → TOP(mark(x1))
TOP(ok(afterNth(x0, x1))) → TOP(afterNth(active(x0), x1))
TOP(ok(tail(x0))) → TOP(tail(active(x0)))
TOP(ok(pair(x0, x1))) → TOP(pair(x0, active(x1)))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(fst(X)) → fst(proper(X))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(u(X1, X2, X3, X4)) → u(proper(X1), proper(X2), proper(X3), proper(X4))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
tail(ok(X)) → ok(tail(X))
head(mark(X)) → mark(head(X))
head(ok(X)) → ok(head(X))
u(mark(X1), X2, X3, X4) → mark(u(X1, X2, X3, X4))
u(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(u(X1, X2, X3, X4))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
snd(mark(X)) → mark(snd(X))
snd(ok(X)) → ok(snd(X))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
fst(mark(X)) → mark(fst(X))
fst(ok(X)) → ok(fst(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
natsFrom(ok(X)) → ok(natsFrom(X))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(natsFrom(X)) → natsFrom(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(fst(X)) → fst(active(X))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(u(X1, X2, X3, X4)) → u(active(X1), X2, X3, X4)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
TOP(ok(tail(cons(x0, x1)))) → TOP(mark(x1))
Used ordering: Polynomial interpretation [25]:
TOP(ok(splitAt(x0, x1))) → TOP(splitAt(active(x0), x1))
TOP(ok(afterNth(x0, x1))) → TOP(mark(snd(splitAt(x0, x1))))
TOP(ok(u(x0, x1, x2, x3))) → TOP(u(active(x0), x1, x2, x3))
TOP(mark(afterNth(x0, x1))) → TOP(afterNth(proper(x0), proper(x1)))
TOP(ok(natsFrom(x0))) → TOP(natsFrom(active(x0)))
TOP(ok(fst(x0))) → TOP(fst(active(x0)))
TOP(mark(tail(x0))) → TOP(tail(proper(x0)))
TOP(mark(head(x0))) → TOP(head(proper(x0)))
TOP(mark(snd(x0))) → TOP(snd(proper(x0)))
TOP(ok(natsFrom(x0))) → TOP(mark(cons(x0, natsFrom(s(x0)))))
TOP(mark(u(x0, x1, x2, x3))) → TOP(u(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(mark(fst(x0))) → TOP(fst(proper(x0)))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(head(x0))) → TOP(head(active(x0)))
TOP(mark(pair(x0, x1))) → TOP(pair(proper(x0), proper(x1)))
TOP(ok(splitAt(s(x0), cons(x1, x2)))) → TOP(mark(u(splitAt(x0, x2), x0, x1, x2)))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(ok(sel(x0, x1))) → TOP(sel(x0, active(x1)))
TOP(ok(pair(x0, x1))) → TOP(pair(active(x0), x1))
TOP(ok(snd(x0))) → TOP(snd(active(x0)))
TOP(ok(afterNth(x0, x1))) → TOP(afterNth(x0, active(x1)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(splitAt(x0, x1))) → TOP(splitAt(proper(x0), proper(x1)))
TOP(ok(snd(pair(x0, x1)))) → TOP(mark(x1))
TOP(ok(sel(x0, x1))) → TOP(sel(active(x0), x1))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(splitAt(0, x0))) → TOP(mark(pair(nil, x0)))
TOP(ok(splitAt(x0, x1))) → TOP(splitAt(x0, active(x1)))
TOP(mark(sel(x0, x1))) → TOP(sel(proper(x0), proper(x1)))
TOP(ok(u(pair(x0, x1), x2, x3, x4))) → TOP(mark(pair(cons(x3, x0), x1)))
TOP(ok(head(cons(x0, x1)))) → TOP(mark(x0))
TOP(mark(natsFrom(x0))) → TOP(natsFrom(proper(x0)))
TOP(ok(take(x0, x1))) → TOP(mark(fst(splitAt(x0, x1))))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(afterNth(x0, x1))) → TOP(afterNth(active(x0), x1))
TOP(ok(tail(x0))) → TOP(tail(active(x0)))
TOP(ok(pair(x0, x1))) → TOP(pair(x0, active(x1)))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
POL(0) = 0
POL(TOP(x1)) = x1
POL(active(x1)) = x1
POL(afterNth(x1, x2)) = x2
POL(cons(x1, x2)) = x1 + x2
POL(fst(x1)) = x1
POL(head(x1)) = x1
POL(mark(x1)) = x1
POL(natsFrom(x1)) = x1
POL(nil) = 0
POL(ok(x1)) = x1
POL(pair(x1, x2)) = x1 + x2
POL(proper(x1)) = x1
POL(s(x1)) = 0
POL(sel(x1, x2)) = x2
POL(snd(x1)) = x1
POL(splitAt(x1, x2)) = x2
POL(tail(x1)) = 1 + x1
POL(take(x1, x2)) = x2
POL(u(x1, x2, x3, x4)) = x1 + x3
proper(nil) → ok(nil)
proper(u(X1, X2, X3, X4)) → u(proper(X1), proper(X2), proper(X3), proper(X4))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(snd(X)) → snd(proper(X))
proper(s(X)) → s(proper(X))
proper(fst(X)) → fst(proper(X))
fst(mark(X)) → mark(fst(X))
fst(ok(X)) → ok(fst(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
natsFrom(ok(X)) → ok(natsFrom(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
snd(mark(X)) → mark(snd(X))
snd(ok(X)) → ok(snd(X))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
tail(mark(X)) → mark(tail(X))
head(ok(X)) → ok(head(X))
head(mark(X)) → mark(head(X))
u(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(u(X1, X2, X3, X4))
u(mark(X1), X2, X3, X4) → mark(u(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
active(take(X1, X2)) → take(X1, active(X2))
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(take(X1, X2)) → take(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(tail(X)) → tail(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(u(X1, X2, X3, X4)) → u(active(X1), X2, X3, X4)
active(head(X)) → head(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(pair(X1, X2)) → pair(X1, active(X2))
active(snd(X)) → snd(active(X))
active(pair(X1, X2)) → pair(active(X1), X2)
active(fst(X)) → fst(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(tail(cons(N, XS))) → mark(XS)
active(head(cons(N, XS))) → mark(N)
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(snd(pair(XS, YS))) → mark(YS)
active(fst(pair(XS, YS))) → mark(XS)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
TOP(ok(splitAt(x0, x1))) → TOP(splitAt(active(x0), x1))
TOP(ok(u(x0, x1, x2, x3))) → TOP(u(active(x0), x1, x2, x3))
TOP(ok(afterNth(x0, x1))) → TOP(mark(snd(splitAt(x0, x1))))
TOP(mark(afterNth(x0, x1))) → TOP(afterNth(proper(x0), proper(x1)))
TOP(ok(fst(x0))) → TOP(fst(active(x0)))
TOP(ok(natsFrom(x0))) → TOP(natsFrom(active(x0)))
TOP(mark(tail(x0))) → TOP(tail(proper(x0)))
TOP(ok(natsFrom(x0))) → TOP(mark(cons(x0, natsFrom(s(x0)))))
TOP(mark(snd(x0))) → TOP(snd(proper(x0)))
TOP(mark(head(x0))) → TOP(head(proper(x0)))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(mark(fst(x0))) → TOP(fst(proper(x0)))
TOP(mark(u(x0, x1, x2, x3))) → TOP(u(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(head(x0))) → TOP(head(active(x0)))
TOP(mark(pair(x0, x1))) → TOP(pair(proper(x0), proper(x1)))
TOP(ok(splitAt(s(x0), cons(x1, x2)))) → TOP(mark(u(splitAt(x0, x2), x0, x1, x2)))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(ok(sel(x0, x1))) → TOP(sel(x0, active(x1)))
TOP(ok(pair(x0, x1))) → TOP(pair(active(x0), x1))
TOP(ok(snd(x0))) → TOP(snd(active(x0)))
TOP(ok(afterNth(x0, x1))) → TOP(afterNth(x0, active(x1)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(splitAt(x0, x1))) → TOP(splitAt(proper(x0), proper(x1)))
TOP(ok(snd(pair(x0, x1)))) → TOP(mark(x1))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(sel(x0, x1))) → TOP(sel(active(x0), x1))
TOP(ok(splitAt(0, x0))) → TOP(mark(pair(nil, x0)))
TOP(mark(sel(x0, x1))) → TOP(sel(proper(x0), proper(x1)))
TOP(ok(splitAt(x0, x1))) → TOP(splitAt(x0, active(x1)))
TOP(ok(u(pair(x0, x1), x2, x3, x4))) → TOP(mark(pair(cons(x3, x0), x1)))
TOP(ok(head(cons(x0, x1)))) → TOP(mark(x0))
TOP(mark(natsFrom(x0))) → TOP(natsFrom(proper(x0)))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(take(x0, x1))) → TOP(mark(fst(splitAt(x0, x1))))
TOP(ok(afterNth(x0, x1))) → TOP(afterNth(active(x0), x1))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
TOP(ok(pair(x0, x1))) → TOP(pair(x0, active(x1)))
TOP(ok(tail(x0))) → TOP(tail(active(x0)))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(fst(X)) → fst(proper(X))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(u(X1, X2, X3, X4)) → u(proper(X1), proper(X2), proper(X3), proper(X4))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
tail(ok(X)) → ok(tail(X))
head(mark(X)) → mark(head(X))
head(ok(X)) → ok(head(X))
u(mark(X1), X2, X3, X4) → mark(u(X1, X2, X3, X4))
u(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(u(X1, X2, X3, X4))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
snd(mark(X)) → mark(snd(X))
snd(ok(X)) → ok(snd(X))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
fst(mark(X)) → mark(fst(X))
fst(ok(X)) → ok(fst(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
natsFrom(ok(X)) → ok(natsFrom(X))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(natsFrom(X)) → natsFrom(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(fst(X)) → fst(active(X))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(u(X1, X2, X3, X4)) → u(active(X1), X2, X3, X4)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
TOP(ok(take(x0, x1))) → TOP(mark(fst(splitAt(x0, x1))))
Used ordering: Polynomial interpretation [25]:
TOP(ok(splitAt(x0, x1))) → TOP(splitAt(active(x0), x1))
TOP(ok(u(x0, x1, x2, x3))) → TOP(u(active(x0), x1, x2, x3))
TOP(ok(afterNth(x0, x1))) → TOP(mark(snd(splitAt(x0, x1))))
TOP(mark(afterNth(x0, x1))) → TOP(afterNth(proper(x0), proper(x1)))
TOP(ok(fst(x0))) → TOP(fst(active(x0)))
TOP(ok(natsFrom(x0))) → TOP(natsFrom(active(x0)))
TOP(mark(tail(x0))) → TOP(tail(proper(x0)))
TOP(ok(natsFrom(x0))) → TOP(mark(cons(x0, natsFrom(s(x0)))))
TOP(mark(snd(x0))) → TOP(snd(proper(x0)))
TOP(mark(head(x0))) → TOP(head(proper(x0)))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(mark(fst(x0))) → TOP(fst(proper(x0)))
TOP(mark(u(x0, x1, x2, x3))) → TOP(u(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(head(x0))) → TOP(head(active(x0)))
TOP(mark(pair(x0, x1))) → TOP(pair(proper(x0), proper(x1)))
TOP(ok(splitAt(s(x0), cons(x1, x2)))) → TOP(mark(u(splitAt(x0, x2), x0, x1, x2)))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(ok(sel(x0, x1))) → TOP(sel(x0, active(x1)))
TOP(ok(pair(x0, x1))) → TOP(pair(active(x0), x1))
TOP(ok(snd(x0))) → TOP(snd(active(x0)))
TOP(ok(afterNth(x0, x1))) → TOP(afterNth(x0, active(x1)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(splitAt(x0, x1))) → TOP(splitAt(proper(x0), proper(x1)))
TOP(ok(snd(pair(x0, x1)))) → TOP(mark(x1))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(sel(x0, x1))) → TOP(sel(active(x0), x1))
TOP(ok(splitAt(0, x0))) → TOP(mark(pair(nil, x0)))
TOP(mark(sel(x0, x1))) → TOP(sel(proper(x0), proper(x1)))
TOP(ok(splitAt(x0, x1))) → TOP(splitAt(x0, active(x1)))
TOP(ok(u(pair(x0, x1), x2, x3, x4))) → TOP(mark(pair(cons(x3, x0), x1)))
TOP(ok(head(cons(x0, x1)))) → TOP(mark(x0))
TOP(mark(natsFrom(x0))) → TOP(natsFrom(proper(x0)))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(afterNth(x0, x1))) → TOP(afterNth(active(x0), x1))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
TOP(ok(pair(x0, x1))) → TOP(pair(x0, active(x1)))
TOP(ok(tail(x0))) → TOP(tail(active(x0)))
POL(0) = 0
POL(TOP(x1)) = x1
POL(active(x1)) = x1
POL(afterNth(x1, x2)) = x2
POL(cons(x1, x2)) = x1 + x2
POL(fst(x1)) = x1
POL(head(x1)) = x1
POL(mark(x1)) = x1
POL(natsFrom(x1)) = x1
POL(nil) = 0
POL(ok(x1)) = x1
POL(pair(x1, x2)) = x1 + x2
POL(proper(x1)) = x1
POL(s(x1)) = 0
POL(sel(x1, x2)) = x2
POL(snd(x1)) = x1
POL(splitAt(x1, x2)) = x2
POL(tail(x1)) = x1
POL(take(x1, x2)) = 1 + x2
POL(u(x1, x2, x3, x4)) = x1 + x3
proper(nil) → ok(nil)
proper(u(X1, X2, X3, X4)) → u(proper(X1), proper(X2), proper(X3), proper(X4))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(snd(X)) → snd(proper(X))
proper(s(X)) → s(proper(X))
proper(fst(X)) → fst(proper(X))
fst(mark(X)) → mark(fst(X))
fst(ok(X)) → ok(fst(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
natsFrom(ok(X)) → ok(natsFrom(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
snd(mark(X)) → mark(snd(X))
snd(ok(X)) → ok(snd(X))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
tail(mark(X)) → mark(tail(X))
head(ok(X)) → ok(head(X))
head(mark(X)) → mark(head(X))
u(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(u(X1, X2, X3, X4))
u(mark(X1), X2, X3, X4) → mark(u(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
active(take(X1, X2)) → take(X1, active(X2))
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(take(X1, X2)) → take(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(tail(X)) → tail(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(u(X1, X2, X3, X4)) → u(active(X1), X2, X3, X4)
active(head(X)) → head(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(pair(X1, X2)) → pair(X1, active(X2))
active(snd(X)) → snd(active(X))
active(pair(X1, X2)) → pair(active(X1), X2)
active(fst(X)) → fst(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(tail(cons(N, XS))) → mark(XS)
active(head(cons(N, XS))) → mark(N)
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(snd(pair(XS, YS))) → mark(YS)
active(fst(pair(XS, YS))) → mark(XS)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
TOP(ok(splitAt(x0, x1))) → TOP(splitAt(active(x0), x1))
TOP(ok(afterNth(x0, x1))) → TOP(mark(snd(splitAt(x0, x1))))
TOP(ok(u(x0, x1, x2, x3))) → TOP(u(active(x0), x1, x2, x3))
TOP(mark(afterNth(x0, x1))) → TOP(afterNth(proper(x0), proper(x1)))
TOP(ok(natsFrom(x0))) → TOP(natsFrom(active(x0)))
TOP(ok(fst(x0))) → TOP(fst(active(x0)))
TOP(mark(tail(x0))) → TOP(tail(proper(x0)))
TOP(mark(head(x0))) → TOP(head(proper(x0)))
TOP(mark(snd(x0))) → TOP(snd(proper(x0)))
TOP(ok(natsFrom(x0))) → TOP(mark(cons(x0, natsFrom(s(x0)))))
TOP(mark(u(x0, x1, x2, x3))) → TOP(u(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(mark(fst(x0))) → TOP(fst(proper(x0)))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(head(x0))) → TOP(head(active(x0)))
TOP(mark(pair(x0, x1))) → TOP(pair(proper(x0), proper(x1)))
TOP(ok(splitAt(s(x0), cons(x1, x2)))) → TOP(mark(u(splitAt(x0, x2), x0, x1, x2)))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(ok(sel(x0, x1))) → TOP(sel(x0, active(x1)))
TOP(ok(pair(x0, x1))) → TOP(pair(active(x0), x1))
TOP(ok(snd(x0))) → TOP(snd(active(x0)))
TOP(ok(afterNth(x0, x1))) → TOP(afterNth(x0, active(x1)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(splitAt(x0, x1))) → TOP(splitAt(proper(x0), proper(x1)))
TOP(ok(snd(pair(x0, x1)))) → TOP(mark(x1))
TOP(ok(sel(x0, x1))) → TOP(sel(active(x0), x1))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(splitAt(0, x0))) → TOP(mark(pair(nil, x0)))
TOP(ok(splitAt(x0, x1))) → TOP(splitAt(x0, active(x1)))
TOP(mark(sel(x0, x1))) → TOP(sel(proper(x0), proper(x1)))
TOP(ok(u(pair(x0, x1), x2, x3, x4))) → TOP(mark(pair(cons(x3, x0), x1)))
TOP(ok(head(cons(x0, x1)))) → TOP(mark(x0))
TOP(mark(natsFrom(x0))) → TOP(natsFrom(proper(x0)))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(afterNth(x0, x1))) → TOP(afterNth(active(x0), x1))
TOP(ok(tail(x0))) → TOP(tail(active(x0)))
TOP(ok(pair(x0, x1))) → TOP(pair(x0, active(x1)))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(fst(X)) → fst(proper(X))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(u(X1, X2, X3, X4)) → u(proper(X1), proper(X2), proper(X3), proper(X4))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
tail(ok(X)) → ok(tail(X))
head(mark(X)) → mark(head(X))
head(ok(X)) → ok(head(X))
u(mark(X1), X2, X3, X4) → mark(u(X1, X2, X3, X4))
u(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(u(X1, X2, X3, X4))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
snd(mark(X)) → mark(snd(X))
snd(ok(X)) → ok(snd(X))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
fst(mark(X)) → mark(fst(X))
fst(ok(X)) → ok(fst(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
natsFrom(ok(X)) → ok(natsFrom(X))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(natsFrom(X)) → natsFrom(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(fst(X)) → fst(active(X))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(u(X1, X2, X3, X4)) → u(active(X1), X2, X3, X4)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
TOP(ok(head(cons(x0, x1)))) → TOP(mark(x0))
Used ordering: Polynomial interpretation with max and min functions [25]:
TOP(ok(splitAt(x0, x1))) → TOP(splitAt(active(x0), x1))
TOP(ok(afterNth(x0, x1))) → TOP(mark(snd(splitAt(x0, x1))))
TOP(ok(u(x0, x1, x2, x3))) → TOP(u(active(x0), x1, x2, x3))
TOP(mark(afterNth(x0, x1))) → TOP(afterNth(proper(x0), proper(x1)))
TOP(ok(natsFrom(x0))) → TOP(natsFrom(active(x0)))
TOP(ok(fst(x0))) → TOP(fst(active(x0)))
TOP(mark(tail(x0))) → TOP(tail(proper(x0)))
TOP(mark(head(x0))) → TOP(head(proper(x0)))
TOP(mark(snd(x0))) → TOP(snd(proper(x0)))
TOP(ok(natsFrom(x0))) → TOP(mark(cons(x0, natsFrom(s(x0)))))
TOP(mark(u(x0, x1, x2, x3))) → TOP(u(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(mark(fst(x0))) → TOP(fst(proper(x0)))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(head(x0))) → TOP(head(active(x0)))
TOP(mark(pair(x0, x1))) → TOP(pair(proper(x0), proper(x1)))
TOP(ok(splitAt(s(x0), cons(x1, x2)))) → TOP(mark(u(splitAt(x0, x2), x0, x1, x2)))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(ok(sel(x0, x1))) → TOP(sel(x0, active(x1)))
TOP(ok(pair(x0, x1))) → TOP(pair(active(x0), x1))
TOP(ok(snd(x0))) → TOP(snd(active(x0)))
TOP(ok(afterNth(x0, x1))) → TOP(afterNth(x0, active(x1)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(splitAt(x0, x1))) → TOP(splitAt(proper(x0), proper(x1)))
TOP(ok(snd(pair(x0, x1)))) → TOP(mark(x1))
TOP(ok(sel(x0, x1))) → TOP(sel(active(x0), x1))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(splitAt(0, x0))) → TOP(mark(pair(nil, x0)))
TOP(ok(splitAt(x0, x1))) → TOP(splitAt(x0, active(x1)))
TOP(mark(sel(x0, x1))) → TOP(sel(proper(x0), proper(x1)))
TOP(ok(u(pair(x0, x1), x2, x3, x4))) → TOP(mark(pair(cons(x3, x0), x1)))
TOP(mark(natsFrom(x0))) → TOP(natsFrom(proper(x0)))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(afterNth(x0, x1))) → TOP(afterNth(active(x0), x1))
TOP(ok(tail(x0))) → TOP(tail(active(x0)))
TOP(ok(pair(x0, x1))) → TOP(pair(x0, active(x1)))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
POL(0) = 0
POL(TOP(x1)) = x1
POL(active(x1)) = x1
POL(afterNth(x1, x2)) = x2
POL(cons(x1, x2)) = x1 + x2
POL(fst(x1)) = x1
POL(head(x1)) = 1 + x1
POL(mark(x1)) = x1
POL(natsFrom(x1)) = x1
POL(nil) = 0
POL(ok(x1)) = x1
POL(pair(x1, x2)) = x1 + x2
POL(proper(x1)) = x1
POL(s(x1)) = 0
POL(sel(x1, x2)) = 1 + x2
POL(snd(x1)) = x1
POL(splitAt(x1, x2)) = x2
POL(tail(x1)) = x1
POL(take(x1, x2)) = x2
POL(u(x1, x2, x3, x4)) = x1 + x3
proper(nil) → ok(nil)
proper(u(X1, X2, X3, X4)) → u(proper(X1), proper(X2), proper(X3), proper(X4))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(snd(X)) → snd(proper(X))
proper(s(X)) → s(proper(X))
proper(fst(X)) → fst(proper(X))
fst(mark(X)) → mark(fst(X))
fst(ok(X)) → ok(fst(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
natsFrom(ok(X)) → ok(natsFrom(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
snd(mark(X)) → mark(snd(X))
snd(ok(X)) → ok(snd(X))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
tail(mark(X)) → mark(tail(X))
head(ok(X)) → ok(head(X))
head(mark(X)) → mark(head(X))
u(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(u(X1, X2, X3, X4))
u(mark(X1), X2, X3, X4) → mark(u(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
active(take(X1, X2)) → take(X1, active(X2))
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(take(X1, X2)) → take(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(tail(X)) → tail(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(u(X1, X2, X3, X4)) → u(active(X1), X2, X3, X4)
active(head(X)) → head(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(pair(X1, X2)) → pair(X1, active(X2))
active(snd(X)) → snd(active(X))
active(pair(X1, X2)) → pair(active(X1), X2)
active(fst(X)) → fst(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(tail(cons(N, XS))) → mark(XS)
active(head(cons(N, XS))) → mark(N)
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(snd(pair(XS, YS))) → mark(YS)
active(fst(pair(XS, YS))) → mark(XS)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
TOP(ok(splitAt(x0, x1))) → TOP(splitAt(active(x0), x1))
TOP(ok(u(x0, x1, x2, x3))) → TOP(u(active(x0), x1, x2, x3))
TOP(ok(afterNth(x0, x1))) → TOP(mark(snd(splitAt(x0, x1))))
TOP(mark(afterNth(x0, x1))) → TOP(afterNth(proper(x0), proper(x1)))
TOP(ok(fst(x0))) → TOP(fst(active(x0)))
TOP(ok(natsFrom(x0))) → TOP(natsFrom(active(x0)))
TOP(mark(tail(x0))) → TOP(tail(proper(x0)))
TOP(ok(natsFrom(x0))) → TOP(mark(cons(x0, natsFrom(s(x0)))))
TOP(mark(snd(x0))) → TOP(snd(proper(x0)))
TOP(mark(head(x0))) → TOP(head(proper(x0)))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(mark(fst(x0))) → TOP(fst(proper(x0)))
TOP(mark(u(x0, x1, x2, x3))) → TOP(u(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(head(x0))) → TOP(head(active(x0)))
TOP(mark(pair(x0, x1))) → TOP(pair(proper(x0), proper(x1)))
TOP(ok(splitAt(s(x0), cons(x1, x2)))) → TOP(mark(u(splitAt(x0, x2), x0, x1, x2)))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(ok(sel(x0, x1))) → TOP(sel(x0, active(x1)))
TOP(ok(pair(x0, x1))) → TOP(pair(active(x0), x1))
TOP(ok(snd(x0))) → TOP(snd(active(x0)))
TOP(ok(afterNth(x0, x1))) → TOP(afterNth(x0, active(x1)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(splitAt(x0, x1))) → TOP(splitAt(proper(x0), proper(x1)))
TOP(ok(snd(pair(x0, x1)))) → TOP(mark(x1))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(sel(x0, x1))) → TOP(sel(active(x0), x1))
TOP(ok(splitAt(0, x0))) → TOP(mark(pair(nil, x0)))
TOP(mark(sel(x0, x1))) → TOP(sel(proper(x0), proper(x1)))
TOP(ok(splitAt(x0, x1))) → TOP(splitAt(x0, active(x1)))
TOP(ok(u(pair(x0, x1), x2, x3, x4))) → TOP(mark(pair(cons(x3, x0), x1)))
TOP(mark(natsFrom(x0))) → TOP(natsFrom(proper(x0)))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(afterNth(x0, x1))) → TOP(afterNth(active(x0), x1))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
TOP(ok(pair(x0, x1))) → TOP(pair(x0, active(x1)))
TOP(ok(tail(x0))) → TOP(tail(active(x0)))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(fst(X)) → fst(proper(X))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(u(X1, X2, X3, X4)) → u(proper(X1), proper(X2), proper(X3), proper(X4))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
tail(ok(X)) → ok(tail(X))
head(mark(X)) → mark(head(X))
head(ok(X)) → ok(head(X))
u(mark(X1), X2, X3, X4) → mark(u(X1, X2, X3, X4))
u(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(u(X1, X2, X3, X4))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
snd(mark(X)) → mark(snd(X))
snd(ok(X)) → ok(snd(X))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
fst(mark(X)) → mark(fst(X))
fst(ok(X)) → ok(fst(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
natsFrom(ok(X)) → ok(natsFrom(X))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(natsFrom(X)) → natsFrom(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(fst(X)) → fst(active(X))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(u(X1, X2, X3, X4)) → u(active(X1), X2, X3, X4)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
TOP(ok(afterNth(x0, x1))) → TOP(mark(snd(splitAt(x0, x1))))
Used ordering: Polynomial interpretation [25]:
TOP(ok(splitAt(x0, x1))) → TOP(splitAt(active(x0), x1))
TOP(ok(u(x0, x1, x2, x3))) → TOP(u(active(x0), x1, x2, x3))
TOP(mark(afterNth(x0, x1))) → TOP(afterNth(proper(x0), proper(x1)))
TOP(ok(fst(x0))) → TOP(fst(active(x0)))
TOP(ok(natsFrom(x0))) → TOP(natsFrom(active(x0)))
TOP(mark(tail(x0))) → TOP(tail(proper(x0)))
TOP(ok(natsFrom(x0))) → TOP(mark(cons(x0, natsFrom(s(x0)))))
TOP(mark(snd(x0))) → TOP(snd(proper(x0)))
TOP(mark(head(x0))) → TOP(head(proper(x0)))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(mark(fst(x0))) → TOP(fst(proper(x0)))
TOP(mark(u(x0, x1, x2, x3))) → TOP(u(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(head(x0))) → TOP(head(active(x0)))
TOP(mark(pair(x0, x1))) → TOP(pair(proper(x0), proper(x1)))
TOP(ok(splitAt(s(x0), cons(x1, x2)))) → TOP(mark(u(splitAt(x0, x2), x0, x1, x2)))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(ok(sel(x0, x1))) → TOP(sel(x0, active(x1)))
TOP(ok(pair(x0, x1))) → TOP(pair(active(x0), x1))
TOP(ok(snd(x0))) → TOP(snd(active(x0)))
TOP(ok(afterNth(x0, x1))) → TOP(afterNth(x0, active(x1)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(splitAt(x0, x1))) → TOP(splitAt(proper(x0), proper(x1)))
TOP(ok(snd(pair(x0, x1)))) → TOP(mark(x1))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(sel(x0, x1))) → TOP(sel(active(x0), x1))
TOP(ok(splitAt(0, x0))) → TOP(mark(pair(nil, x0)))
TOP(mark(sel(x0, x1))) → TOP(sel(proper(x0), proper(x1)))
TOP(ok(splitAt(x0, x1))) → TOP(splitAt(x0, active(x1)))
TOP(ok(u(pair(x0, x1), x2, x3, x4))) → TOP(mark(pair(cons(x3, x0), x1)))
TOP(mark(natsFrom(x0))) → TOP(natsFrom(proper(x0)))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(afterNth(x0, x1))) → TOP(afterNth(active(x0), x1))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
TOP(ok(pair(x0, x1))) → TOP(pair(x0, active(x1)))
TOP(ok(tail(x0))) → TOP(tail(active(x0)))
POL(0) = 0
POL(TOP(x1)) = x1
POL(active(x1)) = x1
POL(afterNth(x1, x2)) = 1 + x2
POL(cons(x1, x2)) = x1 + x2
POL(fst(x1)) = x1
POL(head(x1)) = x1
POL(mark(x1)) = x1
POL(natsFrom(x1)) = x1
POL(nil) = 0
POL(ok(x1)) = x1
POL(pair(x1, x2)) = x1 + x2
POL(proper(x1)) = x1
POL(s(x1)) = 0
POL(sel(x1, x2)) = 1 + x2
POL(snd(x1)) = x1
POL(splitAt(x1, x2)) = x2
POL(tail(x1)) = x1
POL(take(x1, x2)) = x2
POL(u(x1, x2, x3, x4)) = x1 + x3
proper(nil) → ok(nil)
proper(u(X1, X2, X3, X4)) → u(proper(X1), proper(X2), proper(X3), proper(X4))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(snd(X)) → snd(proper(X))
proper(s(X)) → s(proper(X))
proper(fst(X)) → fst(proper(X))
fst(mark(X)) → mark(fst(X))
fst(ok(X)) → ok(fst(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
natsFrom(ok(X)) → ok(natsFrom(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
snd(mark(X)) → mark(snd(X))
snd(ok(X)) → ok(snd(X))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
tail(mark(X)) → mark(tail(X))
head(ok(X)) → ok(head(X))
head(mark(X)) → mark(head(X))
u(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(u(X1, X2, X3, X4))
u(mark(X1), X2, X3, X4) → mark(u(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
active(take(X1, X2)) → take(X1, active(X2))
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(take(X1, X2)) → take(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(tail(X)) → tail(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(u(X1, X2, X3, X4)) → u(active(X1), X2, X3, X4)
active(head(X)) → head(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(pair(X1, X2)) → pair(X1, active(X2))
active(snd(X)) → snd(active(X))
active(pair(X1, X2)) → pair(active(X1), X2)
active(fst(X)) → fst(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(tail(cons(N, XS))) → mark(XS)
active(head(cons(N, XS))) → mark(N)
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(snd(pair(XS, YS))) → mark(YS)
active(fst(pair(XS, YS))) → mark(XS)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
TOP(ok(splitAt(x0, x1))) → TOP(splitAt(active(x0), x1))
TOP(ok(u(x0, x1, x2, x3))) → TOP(u(active(x0), x1, x2, x3))
TOP(mark(afterNth(x0, x1))) → TOP(afterNth(proper(x0), proper(x1)))
TOP(ok(natsFrom(x0))) → TOP(natsFrom(active(x0)))
TOP(ok(fst(x0))) → TOP(fst(active(x0)))
TOP(mark(tail(x0))) → TOP(tail(proper(x0)))
TOP(mark(head(x0))) → TOP(head(proper(x0)))
TOP(mark(snd(x0))) → TOP(snd(proper(x0)))
TOP(ok(natsFrom(x0))) → TOP(mark(cons(x0, natsFrom(s(x0)))))
TOP(mark(u(x0, x1, x2, x3))) → TOP(u(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(mark(fst(x0))) → TOP(fst(proper(x0)))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(head(x0))) → TOP(head(active(x0)))
TOP(mark(pair(x0, x1))) → TOP(pair(proper(x0), proper(x1)))
TOP(ok(splitAt(s(x0), cons(x1, x2)))) → TOP(mark(u(splitAt(x0, x2), x0, x1, x2)))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(ok(sel(x0, x1))) → TOP(sel(x0, active(x1)))
TOP(ok(pair(x0, x1))) → TOP(pair(active(x0), x1))
TOP(ok(snd(x0))) → TOP(snd(active(x0)))
TOP(ok(afterNth(x0, x1))) → TOP(afterNth(x0, active(x1)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(splitAt(x0, x1))) → TOP(splitAt(proper(x0), proper(x1)))
TOP(ok(snd(pair(x0, x1)))) → TOP(mark(x1))
TOP(ok(sel(x0, x1))) → TOP(sel(active(x0), x1))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(splitAt(0, x0))) → TOP(mark(pair(nil, x0)))
TOP(ok(splitAt(x0, x1))) → TOP(splitAt(x0, active(x1)))
TOP(mark(sel(x0, x1))) → TOP(sel(proper(x0), proper(x1)))
TOP(ok(u(pair(x0, x1), x2, x3, x4))) → TOP(mark(pair(cons(x3, x0), x1)))
TOP(mark(natsFrom(x0))) → TOP(natsFrom(proper(x0)))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(afterNth(x0, x1))) → TOP(afterNth(active(x0), x1))
TOP(ok(tail(x0))) → TOP(tail(active(x0)))
TOP(ok(pair(x0, x1))) → TOP(pair(x0, active(x1)))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(fst(X)) → fst(proper(X))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(u(X1, X2, X3, X4)) → u(proper(X1), proper(X2), proper(X3), proper(X4))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
tail(ok(X)) → ok(tail(X))
head(mark(X)) → mark(head(X))
head(ok(X)) → ok(head(X))
u(mark(X1), X2, X3, X4) → mark(u(X1, X2, X3, X4))
u(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(u(X1, X2, X3, X4))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
snd(mark(X)) → mark(snd(X))
snd(ok(X)) → ok(snd(X))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
fst(mark(X)) → mark(fst(X))
fst(ok(X)) → ok(fst(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
natsFrom(ok(X)) → ok(natsFrom(X))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(natsFrom(X)) → natsFrom(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(fst(X)) → fst(active(X))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(u(X1, X2, X3, X4)) → u(active(X1), X2, X3, X4)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
TOP(ok(snd(pair(x0, x1)))) → TOP(mark(x1))
Used ordering: Polynomial interpretation [25]:
TOP(ok(splitAt(x0, x1))) → TOP(splitAt(active(x0), x1))
TOP(ok(u(x0, x1, x2, x3))) → TOP(u(active(x0), x1, x2, x3))
TOP(mark(afterNth(x0, x1))) → TOP(afterNth(proper(x0), proper(x1)))
TOP(ok(natsFrom(x0))) → TOP(natsFrom(active(x0)))
TOP(ok(fst(x0))) → TOP(fst(active(x0)))
TOP(mark(tail(x0))) → TOP(tail(proper(x0)))
TOP(mark(head(x0))) → TOP(head(proper(x0)))
TOP(mark(snd(x0))) → TOP(snd(proper(x0)))
TOP(ok(natsFrom(x0))) → TOP(mark(cons(x0, natsFrom(s(x0)))))
TOP(mark(u(x0, x1, x2, x3))) → TOP(u(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(mark(fst(x0))) → TOP(fst(proper(x0)))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(head(x0))) → TOP(head(active(x0)))
TOP(mark(pair(x0, x1))) → TOP(pair(proper(x0), proper(x1)))
TOP(ok(splitAt(s(x0), cons(x1, x2)))) → TOP(mark(u(splitAt(x0, x2), x0, x1, x2)))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(ok(sel(x0, x1))) → TOP(sel(x0, active(x1)))
TOP(ok(pair(x0, x1))) → TOP(pair(active(x0), x1))
TOP(ok(snd(x0))) → TOP(snd(active(x0)))
TOP(ok(afterNth(x0, x1))) → TOP(afterNth(x0, active(x1)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(splitAt(x0, x1))) → TOP(splitAt(proper(x0), proper(x1)))
TOP(ok(sel(x0, x1))) → TOP(sel(active(x0), x1))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(splitAt(0, x0))) → TOP(mark(pair(nil, x0)))
TOP(ok(splitAt(x0, x1))) → TOP(splitAt(x0, active(x1)))
TOP(mark(sel(x0, x1))) → TOP(sel(proper(x0), proper(x1)))
TOP(ok(u(pair(x0, x1), x2, x3, x4))) → TOP(mark(pair(cons(x3, x0), x1)))
TOP(mark(natsFrom(x0))) → TOP(natsFrom(proper(x0)))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(afterNth(x0, x1))) → TOP(afterNth(active(x0), x1))
TOP(ok(tail(x0))) → TOP(tail(active(x0)))
TOP(ok(pair(x0, x1))) → TOP(pair(x0, active(x1)))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
POL(0) = 0
POL(TOP(x1)) = x1
POL(active(x1)) = x1
POL(afterNth(x1, x2)) = 1 + x2
POL(cons(x1, x2)) = x1 + x2
POL(fst(x1)) = x1
POL(head(x1)) = x1
POL(mark(x1)) = x1
POL(natsFrom(x1)) = x1
POL(nil) = 0
POL(ok(x1)) = x1
POL(pair(x1, x2)) = x1 + x2
POL(proper(x1)) = x1
POL(s(x1)) = 0
POL(sel(x1, x2)) = 1 + x2
POL(snd(x1)) = 1 + x1
POL(splitAt(x1, x2)) = x2
POL(tail(x1)) = x1
POL(take(x1, x2)) = x2
POL(u(x1, x2, x3, x4)) = x1 + x3
proper(nil) → ok(nil)
proper(u(X1, X2, X3, X4)) → u(proper(X1), proper(X2), proper(X3), proper(X4))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(snd(X)) → snd(proper(X))
proper(s(X)) → s(proper(X))
proper(fst(X)) → fst(proper(X))
fst(mark(X)) → mark(fst(X))
fst(ok(X)) → ok(fst(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
natsFrom(ok(X)) → ok(natsFrom(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
snd(mark(X)) → mark(snd(X))
snd(ok(X)) → ok(snd(X))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
tail(mark(X)) → mark(tail(X))
head(ok(X)) → ok(head(X))
head(mark(X)) → mark(head(X))
u(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(u(X1, X2, X3, X4))
u(mark(X1), X2, X3, X4) → mark(u(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
active(take(X1, X2)) → take(X1, active(X2))
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(take(X1, X2)) → take(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(tail(X)) → tail(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(u(X1, X2, X3, X4)) → u(active(X1), X2, X3, X4)
active(head(X)) → head(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(pair(X1, X2)) → pair(X1, active(X2))
active(snd(X)) → snd(active(X))
active(pair(X1, X2)) → pair(active(X1), X2)
active(fst(X)) → fst(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(tail(cons(N, XS))) → mark(XS)
active(head(cons(N, XS))) → mark(N)
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(snd(pair(XS, YS))) → mark(YS)
active(fst(pair(XS, YS))) → mark(XS)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
TOP(ok(splitAt(x0, x1))) → TOP(splitAt(active(x0), x1))
TOP(ok(u(x0, x1, x2, x3))) → TOP(u(active(x0), x1, x2, x3))
TOP(mark(afterNth(x0, x1))) → TOP(afterNth(proper(x0), proper(x1)))
TOP(ok(fst(x0))) → TOP(fst(active(x0)))
TOP(ok(natsFrom(x0))) → TOP(natsFrom(active(x0)))
TOP(mark(tail(x0))) → TOP(tail(proper(x0)))
TOP(ok(natsFrom(x0))) → TOP(mark(cons(x0, natsFrom(s(x0)))))
TOP(mark(snd(x0))) → TOP(snd(proper(x0)))
TOP(mark(head(x0))) → TOP(head(proper(x0)))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(mark(fst(x0))) → TOP(fst(proper(x0)))
TOP(mark(u(x0, x1, x2, x3))) → TOP(u(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(head(x0))) → TOP(head(active(x0)))
TOP(mark(pair(x0, x1))) → TOP(pair(proper(x0), proper(x1)))
TOP(ok(splitAt(s(x0), cons(x1, x2)))) → TOP(mark(u(splitAt(x0, x2), x0, x1, x2)))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(ok(sel(x0, x1))) → TOP(sel(x0, active(x1)))
TOP(ok(pair(x0, x1))) → TOP(pair(active(x0), x1))
TOP(ok(snd(x0))) → TOP(snd(active(x0)))
TOP(ok(afterNth(x0, x1))) → TOP(afterNth(x0, active(x1)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(splitAt(x0, x1))) → TOP(splitAt(proper(x0), proper(x1)))
TOP(ok(sel(x0, x1))) → TOP(sel(active(x0), x1))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(splitAt(0, x0))) → TOP(mark(pair(nil, x0)))
TOP(mark(sel(x0, x1))) → TOP(sel(proper(x0), proper(x1)))
TOP(ok(splitAt(x0, x1))) → TOP(splitAt(x0, active(x1)))
TOP(ok(u(pair(x0, x1), x2, x3, x4))) → TOP(mark(pair(cons(x3, x0), x1)))
TOP(mark(natsFrom(x0))) → TOP(natsFrom(proper(x0)))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(afterNth(x0, x1))) → TOP(afterNth(active(x0), x1))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
TOP(ok(pair(x0, x1))) → TOP(pair(x0, active(x1)))
TOP(ok(tail(x0))) → TOP(tail(active(x0)))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(fst(X)) → fst(proper(X))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(u(X1, X2, X3, X4)) → u(proper(X1), proper(X2), proper(X3), proper(X4))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
tail(ok(X)) → ok(tail(X))
head(mark(X)) → mark(head(X))
head(ok(X)) → ok(head(X))
u(mark(X1), X2, X3, X4) → mark(u(X1, X2, X3, X4))
u(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(u(X1, X2, X3, X4))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
snd(mark(X)) → mark(snd(X))
snd(ok(X)) → ok(snd(X))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
fst(mark(X)) → mark(fst(X))
fst(ok(X)) → ok(fst(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
natsFrom(ok(X)) → ok(natsFrom(X))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(natsFrom(X)) → natsFrom(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(fst(X)) → fst(active(X))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(u(X1, X2, X3, X4)) → u(active(X1), X2, X3, X4)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
TOP(ok(natsFrom(x0))) → TOP(mark(cons(x0, natsFrom(s(x0)))))
Used ordering: Polynomial interpretation [25]:
TOP(ok(splitAt(x0, x1))) → TOP(splitAt(active(x0), x1))
TOP(ok(u(x0, x1, x2, x3))) → TOP(u(active(x0), x1, x2, x3))
TOP(mark(afterNth(x0, x1))) → TOP(afterNth(proper(x0), proper(x1)))
TOP(ok(fst(x0))) → TOP(fst(active(x0)))
TOP(ok(natsFrom(x0))) → TOP(natsFrom(active(x0)))
TOP(mark(tail(x0))) → TOP(tail(proper(x0)))
TOP(mark(snd(x0))) → TOP(snd(proper(x0)))
TOP(mark(head(x0))) → TOP(head(proper(x0)))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(mark(fst(x0))) → TOP(fst(proper(x0)))
TOP(mark(u(x0, x1, x2, x3))) → TOP(u(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(head(x0))) → TOP(head(active(x0)))
TOP(mark(pair(x0, x1))) → TOP(pair(proper(x0), proper(x1)))
TOP(ok(splitAt(s(x0), cons(x1, x2)))) → TOP(mark(u(splitAt(x0, x2), x0, x1, x2)))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(ok(sel(x0, x1))) → TOP(sel(x0, active(x1)))
TOP(ok(pair(x0, x1))) → TOP(pair(active(x0), x1))
TOP(ok(snd(x0))) → TOP(snd(active(x0)))
TOP(ok(afterNth(x0, x1))) → TOP(afterNth(x0, active(x1)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(splitAt(x0, x1))) → TOP(splitAt(proper(x0), proper(x1)))
TOP(ok(sel(x0, x1))) → TOP(sel(active(x0), x1))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(splitAt(0, x0))) → TOP(mark(pair(nil, x0)))
TOP(mark(sel(x0, x1))) → TOP(sel(proper(x0), proper(x1)))
TOP(ok(splitAt(x0, x1))) → TOP(splitAt(x0, active(x1)))
TOP(ok(u(pair(x0, x1), x2, x3, x4))) → TOP(mark(pair(cons(x3, x0), x1)))
TOP(mark(natsFrom(x0))) → TOP(natsFrom(proper(x0)))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(afterNth(x0, x1))) → TOP(afterNth(active(x0), x1))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
TOP(ok(pair(x0, x1))) → TOP(pair(x0, active(x1)))
TOP(ok(tail(x0))) → TOP(tail(active(x0)))
POL(0) = 0
POL(TOP(x1)) = x1
POL(active(x1)) = 0
POL(afterNth(x1, x2)) = 0
POL(cons(x1, x2)) = 0
POL(fst(x1)) = 0
POL(head(x1)) = 0
POL(mark(x1)) = x1
POL(natsFrom(x1)) = 1
POL(nil) = 0
POL(ok(x1)) = x1
POL(pair(x1, x2)) = 0
POL(proper(x1)) = 0
POL(s(x1)) = 0
POL(sel(x1, x2)) = 0
POL(snd(x1)) = 0
POL(splitAt(x1, x2)) = 0
POL(tail(x1)) = 0
POL(take(x1, x2)) = 0
POL(u(x1, x2, x3, x4)) = 0
fst(mark(X)) → mark(fst(X))
fst(ok(X)) → ok(fst(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
natsFrom(ok(X)) → ok(natsFrom(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
snd(mark(X)) → mark(snd(X))
snd(ok(X)) → ok(snd(X))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
tail(mark(X)) → mark(tail(X))
head(ok(X)) → ok(head(X))
head(mark(X)) → mark(head(X))
u(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(u(X1, X2, X3, X4))
u(mark(X1), X2, X3, X4) → mark(u(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
TOP(ok(splitAt(x0, x1))) → TOP(splitAt(active(x0), x1))
TOP(ok(u(x0, x1, x2, x3))) → TOP(u(active(x0), x1, x2, x3))
TOP(mark(afterNth(x0, x1))) → TOP(afterNth(proper(x0), proper(x1)))
TOP(ok(natsFrom(x0))) → TOP(natsFrom(active(x0)))
TOP(ok(fst(x0))) → TOP(fst(active(x0)))
TOP(mark(tail(x0))) → TOP(tail(proper(x0)))
TOP(mark(head(x0))) → TOP(head(proper(x0)))
TOP(mark(snd(x0))) → TOP(snd(proper(x0)))
TOP(mark(u(x0, x1, x2, x3))) → TOP(u(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(mark(fst(x0))) → TOP(fst(proper(x0)))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(head(x0))) → TOP(head(active(x0)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(pair(x0, x1))) → TOP(pair(proper(x0), proper(x1)))
TOP(ok(splitAt(s(x0), cons(x1, x2)))) → TOP(mark(u(splitAt(x0, x2), x0, x1, x2)))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(ok(sel(x0, x1))) → TOP(sel(x0, active(x1)))
TOP(ok(pair(x0, x1))) → TOP(pair(active(x0), x1))
TOP(ok(snd(x0))) → TOP(snd(active(x0)))
TOP(ok(afterNth(x0, x1))) → TOP(afterNth(x0, active(x1)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(splitAt(x0, x1))) → TOP(splitAt(proper(x0), proper(x1)))
TOP(ok(sel(x0, x1))) → TOP(sel(active(x0), x1))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(splitAt(0, x0))) → TOP(mark(pair(nil, x0)))
TOP(ok(splitAt(x0, x1))) → TOP(splitAt(x0, active(x1)))
TOP(mark(sel(x0, x1))) → TOP(sel(proper(x0), proper(x1)))
TOP(ok(u(pair(x0, x1), x2, x3, x4))) → TOP(mark(pair(cons(x3, x0), x1)))
TOP(mark(natsFrom(x0))) → TOP(natsFrom(proper(x0)))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(afterNth(x0, x1))) → TOP(afterNth(active(x0), x1))
TOP(ok(tail(x0))) → TOP(tail(active(x0)))
TOP(ok(pair(x0, x1))) → TOP(pair(x0, active(x1)))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(fst(X)) → fst(proper(X))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(u(X1, X2, X3, X4)) → u(proper(X1), proper(X2), proper(X3), proper(X4))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
tail(ok(X)) → ok(tail(X))
head(mark(X)) → mark(head(X))
head(ok(X)) → ok(head(X))
u(mark(X1), X2, X3, X4) → mark(u(X1, X2, X3, X4))
u(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(u(X1, X2, X3, X4))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
snd(mark(X)) → mark(snd(X))
snd(ok(X)) → ok(snd(X))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
fst(mark(X)) → mark(fst(X))
fst(ok(X)) → ok(fst(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
natsFrom(ok(X)) → ok(natsFrom(X))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(natsFrom(X)) → natsFrom(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(fst(X)) → fst(active(X))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(u(X1, X2, X3, X4)) → u(active(X1), X2, X3, X4)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
TOP(ok(splitAt(0, x0))) → TOP(mark(pair(nil, x0)))
TOP(ok(u(pair(x0, x1), x2, x3, x4))) → TOP(mark(pair(cons(x3, x0), x1)))
Used ordering: Polynomial interpretation with max and min functions [25]:
TOP(ok(splitAt(x0, x1))) → TOP(splitAt(active(x0), x1))
TOP(ok(u(x0, x1, x2, x3))) → TOP(u(active(x0), x1, x2, x3))
TOP(mark(afterNth(x0, x1))) → TOP(afterNth(proper(x0), proper(x1)))
TOP(ok(natsFrom(x0))) → TOP(natsFrom(active(x0)))
TOP(ok(fst(x0))) → TOP(fst(active(x0)))
TOP(mark(tail(x0))) → TOP(tail(proper(x0)))
TOP(mark(head(x0))) → TOP(head(proper(x0)))
TOP(mark(snd(x0))) → TOP(snd(proper(x0)))
TOP(mark(u(x0, x1, x2, x3))) → TOP(u(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(mark(fst(x0))) → TOP(fst(proper(x0)))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(head(x0))) → TOP(head(active(x0)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(pair(x0, x1))) → TOP(pair(proper(x0), proper(x1)))
TOP(ok(splitAt(s(x0), cons(x1, x2)))) → TOP(mark(u(splitAt(x0, x2), x0, x1, x2)))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(ok(sel(x0, x1))) → TOP(sel(x0, active(x1)))
TOP(ok(pair(x0, x1))) → TOP(pair(active(x0), x1))
TOP(ok(snd(x0))) → TOP(snd(active(x0)))
TOP(ok(afterNth(x0, x1))) → TOP(afterNth(x0, active(x1)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(splitAt(x0, x1))) → TOP(splitAt(proper(x0), proper(x1)))
TOP(ok(sel(x0, x1))) → TOP(sel(active(x0), x1))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(splitAt(x0, x1))) → TOP(splitAt(x0, active(x1)))
TOP(mark(sel(x0, x1))) → TOP(sel(proper(x0), proper(x1)))
TOP(mark(natsFrom(x0))) → TOP(natsFrom(proper(x0)))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(afterNth(x0, x1))) → TOP(afterNth(active(x0), x1))
TOP(ok(tail(x0))) → TOP(tail(active(x0)))
TOP(ok(pair(x0, x1))) → TOP(pair(x0, active(x1)))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
POL(0) = 0
POL(TOP(x1)) = x1
POL(active(x1)) = 0
POL(afterNth(x1, x2)) = 0
POL(cons(x1, x2)) = 0
POL(fst(x1)) = 0
POL(head(x1)) = 0
POL(mark(x1)) = x1
POL(natsFrom(x1)) = 0
POL(nil) = 0
POL(ok(x1)) = x1
POL(pair(x1, x2)) = 0
POL(proper(x1)) = 0
POL(s(x1)) = 0
POL(sel(x1, x2)) = 0
POL(snd(x1)) = 0
POL(splitAt(x1, x2)) = 1
POL(tail(x1)) = 0
POL(take(x1, x2)) = 0
POL(u(x1, x2, x3, x4)) = 1
fst(mark(X)) → mark(fst(X))
fst(ok(X)) → ok(fst(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
natsFrom(ok(X)) → ok(natsFrom(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
snd(mark(X)) → mark(snd(X))
snd(ok(X)) → ok(snd(X))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
tail(mark(X)) → mark(tail(X))
head(ok(X)) → ok(head(X))
head(mark(X)) → mark(head(X))
u(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(u(X1, X2, X3, X4))
u(mark(X1), X2, X3, X4) → mark(u(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
TOP(ok(splitAt(x0, x1))) → TOP(splitAt(active(x0), x1))
TOP(ok(u(x0, x1, x2, x3))) → TOP(u(active(x0), x1, x2, x3))
TOP(mark(afterNth(x0, x1))) → TOP(afterNth(proper(x0), proper(x1)))
TOP(ok(fst(x0))) → TOP(fst(active(x0)))
TOP(ok(natsFrom(x0))) → TOP(natsFrom(active(x0)))
TOP(mark(tail(x0))) → TOP(tail(proper(x0)))
TOP(mark(snd(x0))) → TOP(snd(proper(x0)))
TOP(mark(head(x0))) → TOP(head(proper(x0)))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(mark(fst(x0))) → TOP(fst(proper(x0)))
TOP(mark(u(x0, x1, x2, x3))) → TOP(u(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(head(x0))) → TOP(head(active(x0)))
TOP(mark(pair(x0, x1))) → TOP(pair(proper(x0), proper(x1)))
TOP(ok(splitAt(s(x0), cons(x1, x2)))) → TOP(mark(u(splitAt(x0, x2), x0, x1, x2)))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(ok(sel(x0, x1))) → TOP(sel(x0, active(x1)))
TOP(ok(pair(x0, x1))) → TOP(pair(active(x0), x1))
TOP(ok(snd(x0))) → TOP(snd(active(x0)))
TOP(ok(afterNth(x0, x1))) → TOP(afterNth(x0, active(x1)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(splitAt(x0, x1))) → TOP(splitAt(proper(x0), proper(x1)))
TOP(ok(sel(x0, x1))) → TOP(sel(active(x0), x1))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(mark(sel(x0, x1))) → TOP(sel(proper(x0), proper(x1)))
TOP(ok(splitAt(x0, x1))) → TOP(splitAt(x0, active(x1)))
TOP(mark(natsFrom(x0))) → TOP(natsFrom(proper(x0)))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(afterNth(x0, x1))) → TOP(afterNth(active(x0), x1))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
TOP(ok(pair(x0, x1))) → TOP(pair(x0, active(x1)))
TOP(ok(tail(x0))) → TOP(tail(active(x0)))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(fst(X)) → fst(proper(X))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(u(X1, X2, X3, X4)) → u(proper(X1), proper(X2), proper(X3), proper(X4))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
tail(ok(X)) → ok(tail(X))
head(mark(X)) → mark(head(X))
head(ok(X)) → ok(head(X))
u(mark(X1), X2, X3, X4) → mark(u(X1, X2, X3, X4))
u(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(u(X1, X2, X3, X4))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
snd(mark(X)) → mark(snd(X))
snd(ok(X)) → ok(snd(X))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
fst(mark(X)) → mark(fst(X))
fst(ok(X)) → ok(fst(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
natsFrom(ok(X)) → ok(natsFrom(X))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(natsFrom(X)) → natsFrom(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(fst(X)) → fst(active(X))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(u(X1, X2, X3, X4)) → u(active(X1), X2, X3, X4)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
TOP(ok(splitAt(s(x0), cons(x1, x2)))) → TOP(mark(u(splitAt(x0, x2), x0, x1, x2)))
Used ordering: Polynomial interpretation [25]:
TOP(ok(splitAt(x0, x1))) → TOP(splitAt(active(x0), x1))
TOP(ok(u(x0, x1, x2, x3))) → TOP(u(active(x0), x1, x2, x3))
TOP(mark(afterNth(x0, x1))) → TOP(afterNth(proper(x0), proper(x1)))
TOP(ok(fst(x0))) → TOP(fst(active(x0)))
TOP(ok(natsFrom(x0))) → TOP(natsFrom(active(x0)))
TOP(mark(tail(x0))) → TOP(tail(proper(x0)))
TOP(mark(snd(x0))) → TOP(snd(proper(x0)))
TOP(mark(head(x0))) → TOP(head(proper(x0)))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(mark(fst(x0))) → TOP(fst(proper(x0)))
TOP(mark(u(x0, x1, x2, x3))) → TOP(u(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(head(x0))) → TOP(head(active(x0)))
TOP(mark(pair(x0, x1))) → TOP(pair(proper(x0), proper(x1)))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(ok(sel(x0, x1))) → TOP(sel(x0, active(x1)))
TOP(ok(pair(x0, x1))) → TOP(pair(active(x0), x1))
TOP(ok(snd(x0))) → TOP(snd(active(x0)))
TOP(ok(afterNth(x0, x1))) → TOP(afterNth(x0, active(x1)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(splitAt(x0, x1))) → TOP(splitAt(proper(x0), proper(x1)))
TOP(ok(sel(x0, x1))) → TOP(sel(active(x0), x1))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(mark(sel(x0, x1))) → TOP(sel(proper(x0), proper(x1)))
TOP(ok(splitAt(x0, x1))) → TOP(splitAt(x0, active(x1)))
TOP(mark(natsFrom(x0))) → TOP(natsFrom(proper(x0)))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(afterNth(x0, x1))) → TOP(afterNth(active(x0), x1))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
TOP(ok(pair(x0, x1))) → TOP(pair(x0, active(x1)))
TOP(ok(tail(x0))) → TOP(tail(active(x0)))
POL(0) = 0
POL(TOP(x1)) = x1
POL(active(x1)) = 0
POL(afterNth(x1, x2)) = 0
POL(cons(x1, x2)) = 0
POL(fst(x1)) = 0
POL(head(x1)) = 0
POL(mark(x1)) = x1
POL(natsFrom(x1)) = 0
POL(nil) = 0
POL(ok(x1)) = x1
POL(pair(x1, x2)) = 0
POL(proper(x1)) = 0
POL(s(x1)) = 0
POL(sel(x1, x2)) = 0
POL(snd(x1)) = 0
POL(splitAt(x1, x2)) = 1
POL(tail(x1)) = 0
POL(take(x1, x2)) = 0
POL(u(x1, x2, x3, x4)) = 0
fst(mark(X)) → mark(fst(X))
fst(ok(X)) → ok(fst(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
natsFrom(ok(X)) → ok(natsFrom(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
snd(mark(X)) → mark(snd(X))
snd(ok(X)) → ok(snd(X))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
tail(mark(X)) → mark(tail(X))
head(ok(X)) → ok(head(X))
head(mark(X)) → mark(head(X))
u(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(u(X1, X2, X3, X4))
u(mark(X1), X2, X3, X4) → mark(u(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
TOP(ok(splitAt(x0, x1))) → TOP(splitAt(active(x0), x1))
TOP(ok(u(x0, x1, x2, x3))) → TOP(u(active(x0), x1, x2, x3))
TOP(mark(afterNth(x0, x1))) → TOP(afterNth(proper(x0), proper(x1)))
TOP(ok(natsFrom(x0))) → TOP(natsFrom(active(x0)))
TOP(ok(fst(x0))) → TOP(fst(active(x0)))
TOP(mark(tail(x0))) → TOP(tail(proper(x0)))
TOP(mark(head(x0))) → TOP(head(proper(x0)))
TOP(mark(snd(x0))) → TOP(snd(proper(x0)))
TOP(mark(u(x0, x1, x2, x3))) → TOP(u(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(mark(fst(x0))) → TOP(fst(proper(x0)))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(head(x0))) → TOP(head(active(x0)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(pair(x0, x1))) → TOP(pair(proper(x0), proper(x1)))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(ok(sel(x0, x1))) → TOP(sel(x0, active(x1)))
TOP(ok(pair(x0, x1))) → TOP(pair(active(x0), x1))
TOP(ok(snd(x0))) → TOP(snd(active(x0)))
TOP(ok(afterNth(x0, x1))) → TOP(afterNth(x0, active(x1)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(splitAt(x0, x1))) → TOP(splitAt(proper(x0), proper(x1)))
TOP(ok(sel(x0, x1))) → TOP(sel(active(x0), x1))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(mark(sel(x0, x1))) → TOP(sel(proper(x0), proper(x1)))
TOP(ok(splitAt(x0, x1))) → TOP(splitAt(x0, active(x1)))
TOP(mark(natsFrom(x0))) → TOP(natsFrom(proper(x0)))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(afterNth(x0, x1))) → TOP(afterNth(active(x0), x1))
TOP(ok(tail(x0))) → TOP(tail(active(x0)))
TOP(ok(pair(x0, x1))) → TOP(pair(x0, active(x1)))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(fst(X)) → fst(proper(X))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(u(X1, X2, X3, X4)) → u(proper(X1), proper(X2), proper(X3), proper(X4))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
tail(ok(X)) → ok(tail(X))
head(mark(X)) → mark(head(X))
head(ok(X)) → ok(head(X))
u(mark(X1), X2, X3, X4) → mark(u(X1, X2, X3, X4))
u(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(u(X1, X2, X3, X4))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
snd(mark(X)) → mark(snd(X))
snd(ok(X)) → ok(snd(X))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
fst(mark(X)) → mark(fst(X))
fst(ok(X)) → ok(fst(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
natsFrom(ok(X)) → ok(natsFrom(X))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(natsFrom(X)) → natsFrom(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(fst(X)) → fst(active(X))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(u(X1, X2, X3, X4)) → u(active(X1), X2, X3, X4)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))